[1] 陈文瑶, 张卓翔, 孟二从, 等. 膨润土和玄武岩纤维改性水泥砂浆的防渗抗裂性能[J]. 硅酸盐通报, 2023, 42(2): 439-447. CHEN W Y, ZHANG Z X, MENG E C, et al. Impermeability and crack resistance of bentonite and basalt fiber modified cement mortar[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 439-447 (in Chinese). [2] WU M M, ZHAO Q L, SHEN W G, et al. Mix design of self-levelling mortar prepared by curshed sand with high flowability and early strengthening[J]. Construction and Building Materials, 2021, 283: 122679. [3] 孙 健, 李 静, 胡浩然, 等. 浅析国内自流平砂浆研究及应用现状[J]. 河南建材, 2020(5): 25-26. SUN J, LI J, HU H R, et al. Research and application status of self-leveling mortar in China[J]. Henan Building Materials, 2020(5): 25-26 (in Chinese). [4] LONG G C, CHEN Y, TANG Z, et al. Drying shrinkage behavior of cement mortar under low vacuum conditions[J]. Construction and Building Materials, 2023, 374: 130933. [5] 杨晓杰, 董 鹏, 马一平, 等. 聚丙烯酰胺对水泥砂浆塑性收缩开裂性能的影响[J]. 建筑材料学报, 2019, 22(1): 1-6. YANG X J, DONG P, MA Y P, et al. Influence of polyacrylamide on plastic shrinkage cracking of cement mortar[J]. Journal of Building Materials, 2019, 22(1): 1-6 (in Chinese). [6] 杨晓杰, 明守旺, 马一平, 等. 矿物掺合料对砂浆塑性收缩开裂影响的研究[J]. 粉煤灰综合利用, 2016, 29(5): 7-11. YANG X J, MING S W, MA Y P, et al. Research on influence of the mineral admixture on the plastic shrinkage cracking of cement mortar[J]. Fly Ash Comprehensive Utilization, 2016, 29(5): 7-11 (in Chinese). [7] 杨东洋, 曹鸿猷, 黄京龙. MgO膨胀剂对超高性能混凝土收缩性能的影响[J]. 硅酸盐通报, 2022, 41(10): 3420-3427. YANG D Y, CAO H Y, HUANG J L. Effect of MgO expansive agent on shrinkage performance of ultra-high performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3420-3427 (in Chinese). [8] SHEN P L, LU L N, HE Y J, et al. Investigation on expansion effect of the expansive agents in ultra-high performance concrete[J]. Cement and Concrete Composites, 2020, 105: 103425. [9] 李东升, 丁一宁. 纤维对混凝土梁开裂弯矩和弯曲韧性的影响[J]. 混凝土, 2021(5): 88-91+95. LI D S, DING Y N. Investigation into the influence of fibers on cracking moment and flexural toughness of concrete[J]. Concrete, 2021(5): 88-91+95 (in Chinese). [10] WAN Q, WANG Z J, HUANG T Y, et al. Water retention mechanism of cellulose ethers in calcium sulfoaluminate cement-based materials[J]. Construction and Building Materials, 2021, 301: 124118. [11] 武苗苗. 机制砂在大流态砂浆中的应用研究[D]. 武汉: 武汉理工大学, 2018. WU M M. Research on the application of mechanism sand in large fluid mortar[D]. Wuhan: Wuhan University of Technology, 2018 (in Chinese). [12] SU A S, QIN L, ZHANG S J, et al. Effects of shrinkage reducing agent and expansive admixture on the volume deformation of ultrahigh performance concrete[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-7. [13] 张 禹, 张国佩, 张 茶, 等. 利用废糖蜜或废葡萄糖母液为原料生产温轮胶的方法: CN101240306A[P]. 2008-08-13. ZHANG Y, ZHANG G P, ZHANG C, et al. Production of welan gum using waste molasses or waste glucose mother liquor as raw material: CN101240306A[P]. 2008-08-13 (in Chinese). [14] 赵青林, 李北星. 生态干混砂浆[M]. 北京: 化学工业出版社, 2012. ZHAO Q L, LI B X. Ecological dry-mixed mortar[M]. Beijing: Chemical Industry Press, 2012 (in Chinese). [15] 周孔金, 赵青林, 曾鲁平, 等. 改性温轮胶微丸的特性研究[J]. 新世纪水泥导报, 2017, 23(3): 1-6. ZHOU K J, ZHAO Q L, ZENG L P, et al. Study on characteristics of modified warm gelatin pellets[J]. Cement Guide for New Epoch, 2017, 23(3): 1-6 (in Chinese). [16] ZHANG Y L, ZHAO Q L, LIU C Q, et al. Properties comparison of mortars with welan gum or cellulose ether[J]. Construction and Building Materials, 2016, 102: 648-653. [17] 徐玲琳, 杨 肯, 穆帆远, 等. 纤维素醚对硫铝酸盐水泥浆体水组分及水化产物演变的影响[J]. 材料导报, 2022, 36(10): 57-62. XU L L, YANG K, MU F Y, et al. Effect of cellulose ether on the water and hydration products evolution of calcium sulfoaluminate cement paste[J]. Materials Reports, 2022, 36(10): 57-62 (in Chinese). [18] 欧志华, 毛泰威, 沈燕华, 等. 纤维素醚对不同水泥和单矿水化热的影响[J]. 硅酸盐通报, 2016, 35(5): 1606-1611. OU Z H, MAO T W, SHEN Y H, et al. Influence of cellulose ethers on hydration heat of different cements and single mines[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(5): 1606-1611 (in Chinese). [19] GUO C C, WANG R. Influence of calcium sulfoaluminate cement on early-age properties and microstructure of Portland cement with hydroxypropyl methyl cellulose and superplasticizer[J]. Journal of Building Engineering, 2022, 45: 103470. [20] 马一平, 王琼琼, 付 杰, 等. 水泥砂浆塑性收缩开裂预警机制拓展[J]. 建筑材料学报, 2022, 25(4): 327-338. MA Y P, WANG Q Q, FU J, et al. Expansion of early warning mechanism for plastic shrinkage cracking of cement mortar[J]. Journal of Building Materials, 2022, 25(4): 327-338 (in Chinese). [21] YANG G, WU Y K, LI H, et al. Effect of shrinkage-reducing polycarboxylate admixture on cracking behavior of ultra-high strength mortar[J]. Cement and Concrete Composites, 2021, 122: 104117. [22] MARQUES A I, MORAIS J, MORAIS P, et al. Modulus of elasticity of mortars: static and dynamic analyses[J]. Construction and Building Materials, 2020, 232: 117216. [23] 黄正峰, 欧忠文, 罗 伟, 等. 硅灰和减缩剂对混凝土自收缩和孔隙的影响[J]. 硅酸盐通报, 2022, 41(9): 3077-3083. HUANG Z F, OU Z W, LUO W, et al. Effects of silica fume and shrinkage reducing admixture on autogenous shrinkage and porosity of concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3077-3083 (in Chinese). [24] DANG Y D, QIAN J S, QU Y Z, et al. Curing cement concrete by using shrinkage reducing admixture and curing compound[J]. Construction and Building Materials, 2013, 48: 992-997. [25] ZHANG L F, QIAN X Q, YU C D, et al. Influence of evaporation rate on pore size distribution, water loss, and early-age drying shrinkage of cement paste after the initial setting[J]. Construction and Building Materials, 2019, 226: 299-306. [26] ZHAN P M, HE Z H. Application of shrinkage reducing admixture in concrete: a review[J]. Construction and Building Materials, 2019, 201: 676-690. |