[1] NING X, LIU T, WU C L, et al. 3D printing in construction: current status, implementation hindrances, and development agenda[J]. Advances in Civil Engineering, 2021, 2021: 1-12. [2] LABONNOTE N, RNNQUIST A, MANUM B, et al. Additive construction: state-of-the-art, challenges and opportunities[J]. Automation in Construction, 2016, 72: 347-366. [3] ALBAR A, CHOUGAN M, AL-KHEETAN M J, et al. Effective extrusion-based 3D printing system design for cementitious-based materials[J]. Results in Engineering, 2020, 6: 100135. [4] CAO X P, YU S H, CUI H Z, et al. 3D printing devices and reinforcing techniques for extruded cement-based materials: a review[J]. Buildings, 2022, 12(4): 453. [5] PERROT A, RANGEARD D, NERELLA V N, et al. Extrusion of cement-based materials - an overview[J]. RILEM Technical Letters, 2019, 3: 91-97. [6] NAIR S A O, PANDA S, SANTHANAM M, et al. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders[J]. Cement and Concrete Composites, 2020, 112: 103671. [7] PERROT A, MÉLINGE Y, RANGEARD D, et al. Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate[J]. Rheologica Acta, 2012, 51(8): 743-754. [8] CHEN Y, CHAVES FIGUEIREDO S, LI Z M, et al. Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture[J]. Cement and Concrete Research, 2020, 132: 106040. [9] BENBOW J, BRIDGEWATER J. Paste flow and extrusion[M]. Oxford University Press, 1993. [10] PERROT A, RANGEARD D, MÉLINGE Y. Prediction of the ram extrusion force of cement-based materials[J]. Applied Rheology, 2014, 24(5): 53320. [11] 任常在, 王文龙, 李国麟, 等. 固废基硫铝酸盐胶凝材料用于建筑3D打印的特性与过程仿真[J]. 化工学报, 2018, 69(7): 3270-3278. REN C Z, WANG W L, LI G L, et al. Characteristics of solid-waste-based sulfoaluminate cementitious material being used in 3D printing and process simulation[J]. CIESC Journal, 2018, 69(7): 3270-3278 (in Chinese). [12] 张建辉, 杜王芳. 缓凝砂浆在单螺杆挤出机中的流动分析[J]. 实验力学, 2010, 25(5): 598-603. ZHANG J H, DU W F. A visualized flow analysis of the postponed-set mortar with Bingham liquid in a single-screw extruder[J]. Journal of Experimental Mechanics, 2010, 25(5): 598-603 (in Chinese). [13] TAO C C, KUTCHKO B G, ROSENBAUM E, et al. A review of rheological modeling of cement slurry in oil well applications[J]. Energies, 2020, 13(3): 570. [14] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346—2011[S]. 北京: 中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration of China. Cement standard consistency water consumption, setting time, stability test method: GB/T 1346—2011[S]. Beijing: China Standard Publishing House, 2012 (in Chinese). [15] COSTANTINI R, MOLLICONE J P, BATTISTA F. Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow[J]. Physics of Fluids, 2018, 30(2): 025102. [16] 任常在. 固废基硫铝酸盐-磷酸钾镁复合胶凝材料的制备及应用试验研究[D]. 济南: 山东大学, 2019. REN C Z. Experimental study on preparation and application of solid waste sulphoaluminate-potassium magnesium phosphate composite cementitious material[D]. Jinan: Shandong University, 2019 (in Chinese). [17] 施惠生, 郭晓潞, 阚黎黎. 水泥基材料科学[M]. 北京: 中国建材工业出版社, 2011. SHI H S, GUO X L, KAN L L. Cement-based materials science[M]. Beijing: China Building Materials Industry Press, 2011 (in Chinese). [18] 张艳荣. 水泥-化学外加剂-水分散体系早期微结构与流变性[D]. 北京: 清华大学, 2014. ZHANG Y R. Early microstructure and rheology of cement-chemical admixture-water dispersion system[D]. Beijing: Tsinghua University, 2014 (in Chinese). [19] 曹恩祥, 张艳荣, 孔祥明. 减水剂作用下的新拌水泥浆体微结构模型[J]. 混凝土, 2012(8): 37-40. CAO E X, ZHANG Y R, KONG X M. Microstructure model of fresh cement paste with superplasticizer incorporated[J]. Concrete, 2012(8): 37-40 (in Chinese). [20] 徐 震, 王春雷. 室温下纳米尺度金属表面的亲水性: 晶格常数和晶面的影响[C]//第九届计算纳米科学与新能源材料国际研讨会. 上海, 2016, 6(22): 181-182. XU Z, WANG C L. Nanoscale hydrophilicity on metal surfaces at room temperature: coupling lattice constants and crystal faces[C]//9th International Conference on Computational Nanoscience and New Energy Materials. Shanghai, 2016, 6(22): 181-182 (in Chinese). [21] XIE H C, LI G Y, XIONG G J. Microstructure model of the interfacial zone between fresh and old concrete[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2002, 17(4): 64-68. [22] JAYATHILAKAGE R, SANJAYAN J, RAJEEV P. Characterizing Extrudability for 3D Concrete Printing Using Discrete Element Simulations[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham: Springer, 2020: 290-300. [23] 张吉东, 刘晓惠, 边培明, 等. 含水合物沉积物孔隙流动特性数值模拟[J]. 中南大学学报(自然科学版), 2022, 53(3): 855-863. ZHANG J D, LIU X H, BIAN P M, et al. Numerical simulation on flow behavior in hydrate-bearing sediments[J]. Journal of Central South University (Science and Technology), 2022, 53(3): 855-863 (in Chinese). [24] LEWANDOWSKI A, WILCZYŃSKI K. Global modeling of single screw extrusion with slip effects[J]. International Polymer Processing, 2019, 34(1): 81-90. [25] LEWANDOWSKI A, WILCZYŃSKI K. Modeling of twin screw extrusion of polymeric materials[J]. Polymers, 2022, 14(2): 274. |