[1] 张伟国. 第四代核电站材料问题的挑战[J]. 腐蚀与防护, 2006, 27(11): 541-543. ZHANG W G. The challenge of materials problem in generation Ⅳ neclear energy station[J]. Corrosion & Protection, 2006, 27(11): 541-543 (in Chinese). [2] LI C Y, XIA X B, CAI J, et al. Radiation dose distribution of liquid fueled thorium molten salt reactor[J]. Nuclear Science and Techniques, 2021, 32(2): 1-11. [3] VASIL’EV G A, VESELKIN A P, EGOROV Y A, et al. Attenuation of reactor radiations by serpentine concrete[J]. Journal of Nuclear Energy Parts A/B Reactor Science and Technology, 1966, 20(5): 390-397. [4] MARIUSZ D, DARIA J N, KAROLINA B, et al. Influence of serpentinite aggregate on the microstructure and durability of radiation shielding concrete[J]. Construction and Building Materials, 2022, 337: 127536. [5] 伍崇明. 核工程抗强辐射屏蔽混凝土试验研究[D]. 长沙: 中南大学, 2008. WU C M. Experimental study on strong radiation shielding concrete for nuclear engineering[D]. Changsha: Central South University, 2008 (in Chinese). [6] MASOUD M A, EL-KHAYATT A M, KANSOUH W A, et al. Insights into the effect of the mineralogical composition of serpentine aggregates on the radiation attenuation properties of their concretes[J]. Construction and Building Materials, 2020, 263: 120141. [7] 朱荣军, 吴光玉, 薛智瑶. 干保护防辐射蛇纹石混凝土施工技术[J]. 建筑施工, 2022, 44(3): 517-519. ZHU R J, WU G Y, XUE Z Y. Construction technology of dry protection and radiation proof serpentine concrete[J]. Building Construction, 2022, 44(3): 517-519 (in Chinese). [8] JASKULSKI R, GLINICKI M A, KUBISSA W, et al. Application of a non-stationary method in determination of the thermal properties of radiation shielding concrete with heavy and hydrous aggregate[J]. International Journal of Heat and Mass Transfer, 2019, 130: 882-892. [9] BASHTER I I. Calculation of radiation attenuation coefficients for shielding concretes[J]. Annals of Nuclear Energy, 1997, 24(17): 1389-1401. [10] YASTREBINSKII R N, BONDARENKO G G, PAVLENKO V I. Attenuation of photon and neutron radiation using iron-magnetite-serpentinite radiation-protective composite[J]. Inorganic Materials: Applied Research, 2017, 8(2): 275-278. [11] DENISOV A. Radiation changes in serpentinite concretes of “dry” radiation shield in nuclear power plants[J]. IOP Conference Series: Materials Science and Engineering, 2018, 365(3): 032028. [12] ABREFAH R G, TUFFOUR ACHAMPONG K, AMOAH P. Effectiveness of serpentine concrete as shielding material for neutron source facility using Monte Carlo code[J]. Science and Technology of Nuclear Installations, 2023, 2023: 1-7. [13] 杨 博, 张振忠, 赵芳霞. 蛇纹石综合利用现状及发展趋势[J]. 材料导报, 2010, 24(增刊1): 381-384. YANG B, ZHANG Z Z, ZHAO F. Current situation and tendency of comprehensive utilization of serpentine[J]. Material Guide, 2010, 24(supplement 1): 381-384 (in Chinese). [14] 张本曰, 刘 丹, 郭 锐, 等. 含镍蛇纹石的综合利用现状[J]. 矿产综合利用, 2020(4): 13-20. ZHANG B Y, LIU D, GUO R, et al. Comprehensive utilization status of nickel-containing serpentine[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 13-20 (in Chinese). [15] 王开华, 钱伏华. 蛇纹石混凝土在田湾核电站的实验与应用[J]. 中国核电, 2015, 8(1): 38-41. WANG K H, QIAN F H. Serpentine concrete in the experiment and application of tianwan nuclear power station[J]. China Nuclear Power, 2015, 8(1): 38-41 (in Chinese). [16] MASOUD M A, RASHAD A M, SAKR K, et al. Possibility of using different types of Egyptian serpentine as fine and coarse aggregates for concrete production[J]. Materials and Structures, 2020, 53(4): 1-17. [17] OUDA A S. Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding[J]. Progress in Nuclear Energy, 2015, 79: 48-55. [18] GLINICKI M A, GOŁASZEWSKI J, CYGAN G. Formwork pressure of a heavyweight self-compacting concrete mix[J]. Materials (Basel, Switzerland), 2021, 14(6): 1549. [19] TEKIN I, KOTAN T, YURDAKUL M, et al. Mechanical properties of conventional concrete produced with different type of aggregates in Bayburt region[J]. Journal of Polytechnic, 2017, 20(3): 513-518. [20] 杨医博, 麦国文, 郭文瑛, 等. 散裂中子源工程防中子辐射重混凝土配合比研究[J]. 工业建筑, 2019, 49(5): 103-108+97. YANG Y B, MAI G W, GUO W Y, et al. Experimental research on the mix proportion of neutron radiation resistant heavy concrete in Chinese spallation neutron source first-stage project[J]. Industrial Construction, 2019, 49(5): 103-108+97 (in Chinese). [21] OTO B, YILDIZ N, AKDEMIR F, et al. Investigation of gamma radiation shielding properties of various ores[J]. Progress in Nuclear Energy, 2015, 85: 391-403. [22] KUBISSA W, GLINICKI M A. Influence of internal relative humidity and mix design of radiation shielding concrete on air permeability index[J]. Construction and Building Materials, 2017, 147: 352-361. [23] DARIA J, MARIUSZ D, KAROLINA B, et al. Influence of slag cement on the permeability of concrete for biological shielding structures[J]. Energies, 2020, 13(17): 4582. [24] ZAYED A M, MASOUD M A, RASHAD A M, et al. Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete[J]. Construction and Building Materials, 2020, 260: 120473. [25] MASOUD M A, KANSOUH W A, SHAHIEN M G, et al. An experimental investigation on the effects of barite/hematite on the radiation shielding properties of serpentine concretes[J]. Progress in Nuclear Energy, 2020, 120: 103220. [26] SAYYADI A, MOHAMMADI Y, ADLPARVAR M R. Mechanical, durability, and gamma ray shielding characteristics of heavyweight concrete containing serpentine aggregates and lead waste slag[J]. Advances in Civil Engineering, 2023, 2023: 1-11. [27] ZAYED A M, MASOUD M A, SHAHIEN M G, et al. Physical, mechanical, and radiation attenuation properties of serpentine concrete containing boric acid[J]. Construction and Building Materials, 2021, 272: 121641. [28] LEHNER P, GOŁASZEWSKI J. Relationship of different properties from non-destructive testing of heavy concrete from magnetite and serpentinite[J]. Materials (Basel, Switzerland), 2021, 14(15): 4288. [29] AKKI T S, BENAYAD S A, MEGAHID R M. Spatial fluxes and energy distributions of reactor fast neutrons in two types of heat resistant concretes[J]. Nuclear Engineering and Design, 1992, 137(1): 77-81. [30] KANSOUH W A. Radiation distribution through serpentine concrete using local materials and its application as a reactor biological shield[J]. Annals of Nuclear Energy, 2012, 47: 258-263. [31] BASHTER I I, MAKARIOUS A S, EL-SAYED ABDO A. Investigation of hematite-serpentine and ilmenite-limonite concretes for reactor radiation shielding[J]. Annals of Nuclear Energy, 1996, 23(1): 65-71. [32] KANY A M I, EL-GOHARY M I, KAMAL S M. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield[J]. Radiation Physics and Chemistry, 1994, 44(1/2): 157-160. [33] KAUR U, SHARMA J K, SINGH P S, et al. Comparative studies of different concretes on the basis of some photon interaction parameters[J]. Applied Radiation and Isotopes, 2012, 70(1): 233-240. [34] SHARIFI S, BAGHERI R, SHIRMARDI S P. Comparison of shielding properties for ordinary, barite, serpentine and steel-magnetite concretes using MCNP-4C code and available experimental results[J]. Annals of Nuclear Energy, 2013, 53: 529-534. [35] TASNIM A, SAHADATH M H, ISLAM KHAN M N. Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties[J]. Radiation Physics and Chemistry, 2021, 189: 109772. [36] SINGH V P, KORKUT T, BADIGER N M. Comparison of mass attenuation coefficients of concretes using FLUKA, XCOM and experiment results[J]. Radioprotection, 2018, 53(2): 145-148. [37] YOUSEF S, ALNASSAR M, NAOOM B, et al. Heat effect on the shielding and strength properties of some local concretes[J]. Progress in Nuclear Energy, 2008, 50(1): 22-26. [38] ABULFARAJ W H, KAMAL S M. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding[J]. Radiation Physics and Chemistry, 1994, 44(1/2): 139-148. [39] SZYMENDERA L, BLOCISZEWSKI S, WINCEL K, et al. Numerical investigations of concrete attenuation effectiveness in various PWR shield configurations[J]. Nuclear Engineering and Design, 1977, 41(1): 135-143. [40] BYLKIN B K, EGOROV A L, ZHURBENKO E A, et al. Radiation characteristics of reactor structures after the final shutdown of a nuclear power plant with VVER[J]. Atomic Energy, 2009, 106(1): 73-78. [41] ABREFAH R G, BIRIKORANG S A, NYARKO B J B, et al. Design of serpentine cask for Ghana research reactor-1 spent nuclear fuel[J]. Progress in Nuclear Energy, 2014, 77: 84-91. [42] MESBAHI A, AZARPEYVAND A A, SHIRAZI A. Photoneutron production and backscattering in high density concretes used for radiation therapy shielding[J]. Annals of Nuclear Energy, 2011, 38(12): 2752-2756. |