硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (6): 1897-1911.
所属专题: 水泥混凝土
• 水泥混凝土 • 下一篇
吴胜坤1,2, 黄天勇2, 谢岩1, 王展鹏1, 包琦1, 张敏1, 叶航1, 刘琦1
收稿日期:
2023-04-10
修订日期:
2023-04-10
出版日期:
2023-06-15
发布日期:
2023-06-25
通信作者:
刘琦,博士,副教授。E-mail:liuqi@cup.edu.cn
作者简介:
吴胜坤(1998—),男,硕士研究生。主要从事低碳能源工程的研究。E-mail:2021211809@student.cup.edu.cn
基金资助:
WU Shengkun1,2, HUANG Tianyong2, XIE Yan1, WANG Zhanpeng1, BAO Qi1, TIONG Michelle1, YE Hang1, LIU Qi1
Received:
2023-04-10
Revised:
2023-04-10
Online:
2023-06-15
Published:
2023-06-25
摘要: 为了减缓建筑行业生产过程中CO2排放对全球气候变化的影响,建筑行业提出了CO2矿化封存技术,即利用CO2与水泥基材料中的水泥熟料以及水泥水化产物等反应生成以方解石为主的碳酸钙(CaCO3)沉淀和无定形高聚合度硅胶(SiO2·nH2O)。CO2矿化养护水泥基材料在实现永久封存利用CO2的同时,因其矿化产物具有较好的稳定性、填充效应和成核效应,矿化养护后的水泥基材料力学强度得以提升,耐久性得到改善,相比其他养护方法,短时间内可以获得具有高性能的水泥基材料。本文总结了现阶段CO2矿化养护水泥基材料的最新研究进展,从反应机理和影响因素两方面进行了介绍,详细分析了预养护、相对湿度、水胶比、CO2浓度、养护压力和温度等养护条件对水泥基材料CO2矿化养护后性能、固碳率以及矿化程度的影响,并对CO2矿化技术在水泥基材料中未来的发展和研究方向进行了展望。
中图分类号:
吴胜坤, 黄天勇, 谢岩, 王展鹏, 包琦, 张敏, 叶航, 刘琦. 二氧化碳矿化养护水泥基材料研究进展[J]. 硅酸盐通报, 2023, 42(6): 1897-1911.
WU Shengkun, HUANG Tianyong, XIE Yan, WANG Zhanpeng, BAO Qi, TIONG Michelle, YE Hang, LIU Qi. Review on CO2 Mineral Carbonation-Cured Cement-Based Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(6): 1897-1911.
[1] IEA. Global energy review CO2 emissions in 2021[R]. Paris, 2022. [2] 中国气象局气候变化中心. 中国气候变化蓝皮书(2022)[M]. 北京: 科学出版社, 2022: 11-12. Climate Change Center, China Meteorological Administration. Blue book on climate change in China (2022)[M]. Beijing: Science Press, 2022: 11-12 (in Chinese). [3] D’ALESSANDRO D, SMIT B, LONG J. Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. [4] OLAJIRE A A. A review of mineral carbonation technology in sequestration of CO2[J]. Journal of Petroleum Science and Engineering, 2013, 109: 364-392. [5] HESAM O, LEONARD M, JAN S, et al. From unavoidable CO2 source to CO2 sink? A cement industry based on CO2 mineralization[J]. Environmental Science & Technology, 2021, 55(8): 5212-5223. [6] LI L K, LIU Q, HUANG T Y, et al. Mineralization and utilization of CO2 in construction and demolition wastes recycling for building materials: a systematic review of recycled concrete aggregate and recycled hardened cement powder[J]. Separation and Purification Technology, 2022, 298: 121512. [7] 李林坤, 刘 琦, 马忠诚, 等. 二氧化碳矿化强化混凝土再生骨料性能研究进展[J]. 热力发电, 2021, 50(1): 94-103. LI L K, LIU Q, MA Z C, et al. Research progress on properties of recycled concrete aggregates by carbon dioxide mineral carbonation curing[J]. Thermal Power Generation, 2021, 50(1): 94-103 (in Chinese). [8] 赵增丰, 姚 磊, 肖建庄, 等. 再生骨料CO2碳化强化技术研究进展[J]. 硅酸盐学报, 2022, 50(8): 2296-2304. ZHAO Z F, YAO L, XIAO J Z, et al. Development on accelerated carbonation technology to enhance recycled aggregates[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2296-2304 (in Chinese). [9] WANG J J, XU L, LI M L, et al. Effect of pre-carbonation on the properties of cement paste subjected to high temperatures[J]. Journal of Building Engineering, 2022, 51: 104337. [10] 李林坤, 刘 琦, 黄天勇, 等. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 82-90. LI L K, LIU Q, HUANG T Y, et al. Summary of CO2 mineralization storage and utilization technology based on cement-based materials[J]. Materials Reports, 2022, 36(19): 82-90 (in Chinese). [11] 史才军, 王吉云, 涂贞军, 等. CO2养护混凝土技术研究进展[J]. 材料导报, 2017, 31(5): 134-138. SHI C J, WANG J Y, TU Z J, et al. Progresses in CO2 curing of concrete[J]. Materials Review, 2017, 31(5): 134-138 (in Chinese). [12] SHAO Y X, ROSTAMI V, HE Z, et al. Accelerated carbonation of Portland limestone cement[J]. Journal of Materials in Civil Engineering, 2014, 26(1): 117-124. [13] ROSTAMI V, SHAO Y X, BOYD A J. Carbonation curing versus steam curing for precast concrete production[J]. Journal of Materials in Civil Engineering, 2012, 24(9): 1221-1229. [14] ZHANG D, SHAO Y X. Early age carbonation curing for precast reinforced concretes[J]. Construction and Building Materials, 2016, 113: 134-143. [15] 宋佳奕, 李 严, 何 文, 等. 基于复合胶凝材料的CO2矿化养护实验研究[J]. 能源工程, 2021(3): 31-38. SONG J Y, LI Y, HE W, et al. Experimental study on CO2 mineralization maintenance based on composite cementitious materials[J]. Energy Engineering, 2021(3): 31-38 (in Chinese). [16] JANG J G, LEE H K. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement[J]. Cement and Concrete Research, 2016, 82: 50-57. [17] MARIES A. The activation of Portland cement by carbon dioxide[C]//Proceeding of Conference in Cement and Concrete Science, Oxford, UK. 1985. [18] CHANG H L, WANG Y F, WANG X L, et al. Effects of carbonation on phase composition of metakaolin-blended cement pastes[J]. Construction and Building Materials, 2022, 324: 126639. [19] HUANG H, GUO R N, WANG T, et al. Carbonation curing for wollastonite-Portland cementitious materials: CO2 sequestration potential and feasibility assessment[J]. Journal of Cleaner Production, 2019, 211: 830-841. [20] WANG T, HUANG H, HU X T, et al. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate[J]. Chemical Engineering Journal, 2017, 323: 320-329. [21] YOUNG J F, BERGER R L, BREESE J. Accelerated curing of compacted calcium silicate mortars on exposure to CO2[J]. Journal of the American Ceramic Society, 1974, 57(9): 394-397. [22] GOODBRAKE C J, YOUNG J F, BERGER R L. Reaction of beta-dicalcium silicate and tricalcium silicate with carbon dioxide and water vapor[J]. Journal of the American Ceramic Society, 1979, 62(3/4): 168-171. [23] GOODBRAKE C J, YOUNG J F, BERGER R L. Reaction of hydraulic calcium silicates with carbon dioxide and water[J]. Journal of the American Ceramic Society, 1979, 62(9/10): 488-491. [24] SAETTA A V, VITALIANI R V. Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures[J]. Cement and Concrete Research, 2005, 35(5): 958-967. [25] BERGER R L, YOUNG J F, LEUNG K. Acceleration of hydration of calcium silicates by carbon dioxide treatment[J]. Nature Physical Science, 1972, 240(97): 16-18. [26] ASHRAF W, OLEK J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials[J]. Journal of Materials Science, 2016, 51(13): 6173-6191. [27] BERGER R L. Stabilization of silicate structures by carbonation[J]. Cement and Concrete Research, 1979, 9(5): 649-651. [28] GOTO S, SUENAGA K, KADO T, et al. Calcium silicate carbonation products[J]. Journal of the American Ceramic Society, 1995, 78(11): 2867-2872. [29] MU Y D, LIU Z C, WANG F Z. Comparative study on the carbonation-activated calcium silicates as sustainable binders: reactivity, mechanical performance, and microstructure[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7058-7070. [30] CHEN T F, XU P J, GAO X J, et al. New sights in early carbonation of calcium silicates: performance, mechanism and nanostructure[J]. Construction and Building Materials, 2022, 314: 125622. [31] SHTEPENKO O, HILLS C, BROUGH A, et al. The effect of carbon dioxide on β-dicalcium silicate and Portland cement[J]. Chemical Engineering Journal, 2006, 118(1/2): 107-118. [32] CHANG J, FANG Y F, SHANG X P. The role of β-C2S and γ-C2S in carbon capture and strength development[J]. Materials and Structures, 2016, 49(10): 4417-4424. [33] FANG Y F, CHANG J. Rapid hardening β-C2S mineral and microstructure changes activated by accelerated carbonation curing[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2): 681-689. [34] WANG D, CHANG J. Comparison on accelerated carbonation of β-C2S, Ca(OH)2, and C4AF: Reaction degree, multi-properties, and products[J]. Construction and Building Materials, 2019, 224: 336-347. [35] LIU Z, MENG W N. Fundamental understanding of carbonation curing and durability of carbonation-cured cement-based composites: a review[J]. Journal of CO2 Utilization, 2021, 44: 101428. [36] PAPADAKIS V, ANTIOHOS S, TSIMAS S. Supplementary cementing materials in concrete: part II: a fundamental estimation of the efficiency factor[J]. Cement and Concrete Research, 2002, 32: 1533-1538. [37] NISHIKAWA T, SUZUKI K, ITO S, et al. Decomposition of synthesized ettringite by carbonation[J]. Cement and Concrete Research, 1992, 22(1): 6-14. [38] 张玲峰, 韩建德, 刘伟庆, 等. 碳化导致水泥基材料微观结构演变的研究进展[J]. 材料导报, 2015, 29(3): 85-95. ZHANG L F, HAN J D, LIU W Q, et al. Microstructure evolution of cement-based materials caused by carbonation reaction: a review[J]. Materials Review, 2015, 29(3): 85-95 (in Chinese). [39] AGHAJANIAN S, NIEMINEN H, LAARI A, et al. Integration of a calcium carbonate crystallization process and membrane contactor-based CO2 capture[J]. Separation and Purification Technology, 2021, 274: 119043. [40] CHANG J, WANG D, FANG Y F. Effects of mineralogical changes in BOFS during carbonation on pH and Ca and Si leaching[J]. Construction and Building Materials, 2018, 192: 584-592. [41] MEHDIPOUR I, FALZONE G, LA PLANTE E C, et al. How microstructure and pore moisture affect strength gain in portlandite-enriched composites that mineralize CO2[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13053-13061. [42] 唐陈希. C3S与β-C2S碳化养护的影响因素及机理研究[D]. 长沙: 湖南大学, 2021: 6-7. TANG C X. Study on influencing factors and mechanism of carbonation curing of C3S and β-C2S[D]. Changsha: Hunan University, 2021: 6-7 (in Chinese). [43] MORANDEAU A, THIÉRY M, DANGLA P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties[J]. Cement and Concrete Research, 2014, 56: 153-170. [44] LI Y Q, LIU W, XING F, et al. Carbonation of the synthetic calcium silicate hydrate (C-S-H) under different concentrations of CO2: chemical phases analysis and kinetics[J]. Journal of CO2 Utilization, 2020, 35: 303-313. [45] CASTELLOTE M, FERNANDEZ L, ANDRADE C, et al. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations[J]. Materials and Structures, 2009, 42(4): 515-525. [46] FERNÁNDEZ-CARRASCO L, TORRÉS-MARTÍN D, MARTÍNEZ-RAMÍREZ S. Carbonation of ternary building cementing materials[J]. Cement and Concrete Composites, 2012, 34(10): 1180-1186. [47] 史才军, 何平平, 涂贞军, 等. 预养护对二氧化碳养护混凝土过程及显微结构的影响[J]. 硅酸盐学报, 2014, 42(8): 996-1004. SHI C J, HE P P, TU Z J, et al. Effect of pre-conditioning on process and microstructure of carbon dioxide cured concrete[J]. Journal of the Chinese Ceramic Society, 2014, 42(8): 996-1004 (in Chinese). [48] 卢 豹. 硅酸盐水泥CO2养护及后续水化研究[D]. 长沙: 湖南大学, 2020: 10. LU B. Study on CO2 curing and subsequent hydration of Portland cement[D]. Changsha: Hunan University, 2020: 10 (in Chinese). [49] SHAO Y, SHI C. Carbonation curing for making concrete products: an old concept and a renewed interest[C]//Proceedings of the 6thInternational Symposium on Cement and Concrete. 2006, 2: 823-830. [50] MONKMAN S, SHAO Y X. Carbonation curing of slag-cement concrete for binding CO2 and improving performance[J]. Journal of Materials in Civil Engineering, 2010, 22(4): 296-304. [51] 查晓雄, 王海洋, 冯甘霖. 超临界碳化对水泥基材料性能和孔径结构的影响[J]. 哈尔滨工业大学学报, 2014, 46(11): 52-57. ZHA X X, WANG H Y, FENG G L. Effects of supercritical carbonation on the property and pore structure of cement-based materials[J]. Journal of Harbin Institute of Technology, 2014, 46(11): 52-57 (in Chinese). [52] HAY R, CELIK K. Accelerated carbonation of reactive magnesium oxide cement (RMC)-based composite with supercritical carbon dioxide (scCO2)[J]. Journal of Cleaner Production, 2020, 248: 119282. [53] URBONAS L, LENO V, HEINZ D. Effect of carbonation in supercritical CO2 on the properties of hardened cement paste of different alkalinity[J]. Construction and Building Materials, 2016, 123: 704-711. [54] 邹庆焱, 史才军, 郑克仁, 等. 预养护对砌块混凝土二氧化碳养护的影响[J]. 建筑材料学报, 2008, 11(1): 116-120. ZOU Q Y, SHI C J, ZHENG K R, et al. Effect of pre-conditioning on CO2 curing of block concretes[J]. Journal of Building Materials, 2008, 11(1): 116-120 (in Chinese). [55] XUE K W, WAN C J, XU Y W, et al. Effect of pre-hydration age on phase assemblage, microstructure and compressive strength of CO2 cured cement mortar[J]. Construction and Building Materials, 2022, 325: 126760. [56] 涂贞军, 史才军, 何平平, 等. 掺CaCO3粉及后续水养护对CO2养护混凝土强度和显微结构的影响[J]. 硅酸盐学报, 2016, 44(8): 1110-1119. TU Z J, SHI C J, HE P P, et al. Effects of CaCO3 powder and subsequent water curing on compressive strength and microstructure of CO2-cured concrete[J]. Journal of the Chinese Ceramic Society, 2016, 44(8): 1110-1119 (in Chinese). [57] ZHAN B J, POON C S, SHI C J. Materials characteristics affecting CO2 curing of concrete blocks containing recycled aggregates[J]. Cement and Concrete Composites, 2016, 67: 50-59. [58] HE P P, SHI C J, TU Z J, et al. Effect of further water curing on compressive strength and microstructure of CO2-cured concrete[J]. Cement and Concrete Composites, 2016, 72: 80-88. [59] EL-HASSAN H, SHAO Y X, GHOULEH, Z. Effect of initial curing on carbonation of lightweight concrete masonry units[J]. ACI Materials Journal, 2013, 110(4): 441-450. [60] SIDDIQUE S, NAQI A L, JANG J G. Influence of water to cement ratio on CO2 uptake capacity of belite-rich cement upon exposure to carbonation curing[J]. Cement and Concrete Composites, 2020, 111: 103616. [61] ZHANG D, CAI X H, SHAO Y X. Carbonation curing of precast fly ash concrete[J]. Journal of Materials in Civil Engineering, 2016, 28(11): 04016127. [62] MO L W, PANESAR D K. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO[J]. Cement and Concrete Research, 2012, 42(6): 769-777. [63] SHARMA D, GOYAL S. Accelerated carbonation curing of cement mortars containing cement kiln dust: an effective way of CO2 sequestration and carbon footprint reduction[J]. Journal of Cleaner Production, 2018, 192: 844-854. [64] QIN L, GAO X J, CHEN T F. Influence of mineral admixtures on carbonation curing of cement paste[J]. Construction and Building Materials, 2019, 212: 653-662. [65] QIN L, GAO X J. Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation[J]. Waste Management, 2019, 89: 254-264. [66] 曾海马, 刘志超, 王发洲. 碳化养护对大掺量钢渣砂浆的力学性能及显微结构的影响[J]. 硅酸盐学报, 2020, 48(11): 1801-1807. ZENG H M, LIU Z C, WANG F Z. Effect of accelerated carbonation curing on mechanical property and microstructure of high volume steel slag mortar[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1801-1807 (in Chinese). [67] YAN D M, LU J Y, SUN Y F, et al. CO2 pretreatment to aerated concrete with high-volume industry wastes enables a sustainable precast concrete industry[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3363-3375. [68] LU J Y, RUAN S Q, LIU Y, et al. Morphological characteristics of calcium carbonate crystallization in CO2 pre-cured aerated concrete[J]. RSC Advances, 2022, 12(23): 14610-14620. [69] 孙一夫, 李凤军, 何 文, 等. 二氧化碳矿化养护加气混凝土试验研究[J]. 洁净煤技术, 2021, 27(2): 237-245. SUN Y F, LI F J, HE W, et al. Experimental study on carbon dioxide mineralization curing aerated concrete[J]. Clean Coal Technology, 2021, 27(2): 237-245 (in Chinese). [70] GUO R N, CHEN Q Y, HUANG H, et al. Carbonation curing of industrial solid waste-based aerated concretes[J]. Greenhouse Gases: Science and Technology, 2019, 9(2): 433-443. [71] 张 丰, 莫立武, 邓 敏, 等. 碳化对钢渣-水泥-CaO-MgO砂浆强度和微观结构的影响[J]. 建筑材料学报, 2017, 20(6): 854-861. ZHANG F, MO L W, DENG M, et al. Effect of carbonation curing on mechanical strength and microstructure of mortars prepared with steel slag-cement-MgO-CaO blends[J]. Journal of Building Materials, 2017, 20(6): 854-861 (in Chinese). [72] 何智海, 刘运华, 白 轲, 等. 混凝土碳化研究进展[J]. 材料导报, 2008, 22(增刊1): 353-357. HE Z H, LIU Y H, BAI K, et al. Progress in research on carbonation of concrete[J]. Materials Review, 2008, 22(supplement 1): 353-357 (in Chinese). [73] ELSALAMAWY M, MOHAMED A R, KAMAL E M. The role of relative humidity and cement type on carbonation resistance of concrete[J]. Alexandria Engineering Journal, 2019, 58(4): 1257-1264. [74] PAPADAKIS V G, VAYENAS C G, FARDIS M N. A reaction engineering approach to the problem of concrete carbonation[J]. The American Institute of Chemical Engineers, 1989, 35(10): 1639-1650. [75] YANG Y H, XU G, TIAN B. Carbonation characteristics of cement-based materials under the uniform distribution of pore water[J]. Construction and Building Materials, 2021, 275: 121450. [76] XUAN D X, ZHAN B J, POON C S. A maturity approach to estimate compressive strength development of CO2-cured concrete blocks[J]. Cement and Concrete Composites, 2018, 85: 153-160. [77] 贾晓晓, 林忠财. CO2养护对水泥净浆力学性能、吸水率和显微硬度的影响[J]. 公路工程, 2021, 46(5): 87-91+103. JIA X X, LIN Z C. Effect of CO2 curing on mechanical properties, water absorption and microhardness of cement paste[J]. Highway Engineering, 2021, 46(5): 87-91+103 (in Chinese). [78] ZHANG K B, YAN Y L. Classification of durability of concrete structures based on environmental action[J]. Applied Mechanics and Materials, 2012, 204: 3213-3217. [79] DROUET E, POYET S, LE BESCOP P, et al. Carbonation of hardened cement pastes: influence of temperature[J]. Cement and Concrete Research, 2019, 115: 445-459. [80] XU Z H, ZHANG Z X, HUANG J S, et al. Effects of temperature, humidity and CO2 concentration on carbonation of cement-based materials: a review[J]. Construction and Building Materials, 2022, 346: 128399. [81] 柳俊哲, 吕丽华, 李玉顺. 混凝土碳化研究与进展(2): 碳化速度的影响因素及碳化对混凝土品质的影响[J]. 混凝土, 2005(12): 10-13+17. LIU J Z, LV L H, LI Y S. Review of carbonation in reinforced concrete(Ⅱ): factors influencing carbonation rate of concrete and carbonation effect on concrete structure[J]. Concrete, 2005(12): 10-13+17 (in Chinese). [82] 俞伯平, 徐东海. 混凝土碳化的研究与进展[J]. 河南建材, 2015(3): 201-204. YU B P, XU D H. Research and progress of concrete carbonization[J]. Henan Building Materials, 2015(3): 201-204 (in Chinese). [83] 程雄飞, 林忠财, 任鹏飞. 混凝土及再生混凝土的二氧化碳养护概述[J]. 混凝土, 2020(7): 156-160. CHENG X F, LIN Z C, REN P F. Review of CO2 curing for concrete and recycled concrete[J]. Concrete, 2020(7): 156-160 (in Chinese). [84] KWON S J, SONG H W. Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling[J]. Cement and Concrete Research, 2010, 40(1): 119-127. [85] MEHDIZADEH H, JIA X X, MO K H, et al. Effect of water-to-cement ratio induced hydration on the accelerated carbonation of cement pastes[J]. Environmental Pollution, 2021, 280: 116914. [86] PIASTA W, ZARZYCKI B. The effect of cement paste volume and w/c ratio on shrinkage strain, water absorption and compressive strength of high performance concrete[J]. Construction and Building Materials, 2017, 140: 395-402. [87] ZAJAC M, SKIBSTED J, SKOCEK J, et al. Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation[J]. Cement and Concrete Research, 2020, 130: 105990. [88] WANG J B, XU H X, XU D Y, et al. Accelerated carbonation of hardened cement pastes: influence of porosity[J]. Construction and Building Materials, 2019, 225: 159-169. [89] TIONG M, LI X M, MO K H, et al. Effects of moulding pressure and w/c induced pore water saturation on the CO2 curing efficiency of dry-mix cement blocks[J]. Construction and Building Materials, 2022, 335: 127509. [90] LU B, HE P P, LIU J H, et al. Microstructure of Portland cement paste subjected to different CO2 concentrations and further water curing[J]. Journal of CO2 Utilization, 2021, 53: 101714. [91] LI X M, LING T C. Instant CO2 curing for dry-mix pressed cement pastes: consideration of CO2 concentrations coupled with further water curing[J]. Journal of CO2 Utilization, 2020, 38: 348-354. [92] ASHRAF W. Carbonation of cement-based materials: challenges and opportunities[J]. Construction and Building Materials, 2016, 120: 558-570. [93] CUI H Z, TANG W, LIU W, et al. Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms[J]. Construction and Building Materials, 2015, 93: 522-527. [94] 张忠伦, 高 强, 姜瑞雨, 等. 新型低碳胶凝材料制备及CO2养护钙基建筑材料的研究进展[J]. 中国建材科技, 2022, 31(1): 1-8. ZHANG Z L, GAO Q, JIANG R Y, et al. Research progress in preparation of new low-carbon cementitious materials and CO2 curing calcium-based building materials[J]. China Building Materials Science & Technology, 2022, 31(1): 1-8 (in Chinese). [95] 邹庆焱. 二氧化碳养护混凝土技术研究[D]. 长沙: 中南大学, 2008: 53-57. ZOU Q Y. Study on carbon dioxide curing concrete technology[D]. Changsha: Central South University, 2008: 53-57 (in Chinese). [96] HERNÁNDEZ-RODRÍGUEZ A, ORLANDO A, MONTEGROSSI G, et al. Experimental analysis on the carbonation rate of Portland cement at room temperature and CO2 partial pressure from 1 to 51 bar[J]. Cement and Concrete Composites, 2021, 124: 104271. [97] SHI C J, WU Y Z. Studies on some factors affecting CO2 curing of lightweight concrete products[J]. Resources, Conservation and Recycling, 2008, 52(8/9): 1087-1092. [98] LI J J, JACOBS A D, HITCH M. Direct aqueous carbonation on olivine at a CO2 partial pressure of 6.5 MPa[J]. Energy, 2019, 173: 902-910. [99] ZHANG D, GHOULEH Z, SHAO Y X. Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization, 2017, 21: 119-131. [100] AHMAD S, ASSAGGAF R A, MASLEHUDDIN M, et al. Effects of carbonation pressure and duration on strength evolution of concrete subjected to accelerated carbonation curing[J]. Construction and Building Materials, 2017, 136: 565-573. [101] 耿 欧, 张 鑫, 张铖铠. 再生混凝土碳化深度预测模型[J]. 中国矿业大学学报, 2015, 44(1): 54-58. GENG O, ZHANG X, ZHANG C K. Prediction models of the carbonization depth of recycled concrete[J]. Journal of China University of Mining & Technology, 2015, 44(1): 54-58 (in Chinese). [102] LU B, DRISSI S, LIU J H, et al. Effect of temperature on CO2 curing, compressive strength and microstructure of cement paste[J]. Cement and Concrete Research, 2022, 157: 106827. [103] 林忠财, 朱芳萍, 王 敏. 高温碳化养护对干硬性水泥净浆强度及微观性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3337-3344. LING T C, ZHU F P, WANG M. Effect of high temperature carbonation curing on strength and microstructure of dry-mixed cement pastes[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3337-3344 (in Chinese). [104] ISHIDA T, LI C H. Modeling of carbonation based on thermo-hygro physics with strong coupling of mass transport and equilibrium in micro-pore structure of concrete[J]. Journal of Advanced Concrete Technology, 2008, 6(2): 303-316. |
[1] | 张惠一, 桂尊曜, 蒲云东, 齐孟, 曹蔚琦, 袁小亚. 羟基化石墨烯对水泥基渗透结晶型防水材料力学性能的影响[J]. 硅酸盐通报, 2023, 42(5): 1569-1577. |
[2] | 周丽娜, 蔡颖, 马财龙, 罗玲. 水滑石复合水泥基材料氯离子吸附能力的研究进展[J]. 硅酸盐通报, 2023, 42(4): 1137-1147. |
[3] | 梁锐, 孔森, 张琰, 刘佳龙. 梳状纳米二氧化硅分散液的制备及对水泥基材料性能的提升[J]. 硅酸盐通报, 2023, 42(4): 1183-1193. |
[4] | 殷实, 李北星, 陈鹏博, 金德川. 再生砂混凝土毛细吸水特性研究[J]. 硅酸盐通报, 2023, 42(4): 1205-1216. |
[5] | 修建得, 金祖权, 李宁, 侯保荣. 海洋盐雾环境下混凝土中氯离子传输研究进展[J]. 硅酸盐通报, 2023, 42(3): 771-785. |
[6] | 唐咸远, 马杰灵, 罗杰, 何滨冰, 陆澄剑. 钢渣微粉生态型超高性能混凝土力学性能影响因素分析[J]. 硅酸盐通报, 2023, 42(2): 607-617. |
[7] | 张啸, 王璜琪, 王栋民. 黄金尾矿制备水泥和混凝土的研究进展[J]. 硅酸盐通报, 2022, 41(9): 3121-2128. |
[8] | 耿圆洁, 孙丛涛, 孙明, 张余果, 段继周. 水泥基材料氯离子结合机理及影响因素研究综述[J]. 硅酸盐通报, 2022, 41(8): 2604-2617. |
[9] | 张璐, 毛倩瑾, 伍文文, 李润丰, 韩磊, 王子明, 崔素萍. 吸水性微胶囊界面修饰提高水泥基材料抗渗性研究[J]. 硅酸盐通报, 2022, 41(8): 2663-2671. |
[10] | 祁帅, 田青, 张苗, 屈孟娇, 姚田帅, 王成. 水泥基材料成核剂研究进展[J]. 硅酸盐通报, 2022, 41(7): 2223-2234. |
[11] | 何晓雁, 张天晓, 王辰昊, 武皓杰. 纤维水泥基材料抗冻性与孔结构关系的变化规律[J]. 硅酸盐通报, 2022, 41(5): 1529-1538. |
[12] | 万洋, 余剑英, 何鹏, 曾尚恒. 基于微波加热的热膨胀微球/石蜡/石墨自修复功能材料的制备及其在砂浆中的应用[J]. 硅酸盐通报, 2022, 41(3): 757-765. |
[13] | 秦昭巧, 陈新杰, 储洪强, 张海生, 张迎忠, 姚乃嘉, 蒋林华. 镀镍碳纤维水泥基材料的电热性能研究[J]. 硅酸盐通报, 2022, 41(3): 802-809. |
[14] | 曾昊, 谭幸淼, 梁超锋. 花岗岩废砂粉对水泥基材料性能影响的研究进展[J]. 硅酸盐通报, 2022, 41(2): 390-400. |
[15] | 张研, 王鹏鹏, 吴哲康. 基于相关向量机模型的混凝土综合性能预测[J]. 硅酸盐通报, 2022, 41(1): 118-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||