[1] LI X M, GAO J K. Recent advances of metal-organic frameworks-based proton exchange membranes in fuel cell applications[J]. SusMat, 2022, 2(5): 504-534. [2] WANG Y, CHEN K S, MISHLER J, et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007. [3] 高帷韬, 雷一杰, 张 勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. GAO W T, LEI Y J, ZHANG X, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555 (in Chinese). [4] United States Department of Energy. DOE hydrogen and fuel cells program record 20005: automotive fuel cell targets and status[EB/OL].[2020-8-13]. https://www.hydrogen.energy.gov/pdfs/20005-automotive-fuel-cell-targets-status. [5] ZATOİ M, ROZIÃRE J, JONES D J. Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: a review[J]. Sustainable Energy & Fuels, 2017, 1(3): 409-438. [6] 叶跃坤, 池 滨, 江世杰, 等. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652. YE Y K, CHI B, JIANG S J, et al. Enhancing the durability of membrane electrode assembly of proton exchange membrane fuel cells[J]. Progress in Chemistry, 2019, 31(12): 1637-1652 (in Chinese). [7] HAN D B, HOSSAIN S I, SON B, et al. Pyrochlore zirconium gadolinium oxide nanorods composite membrane for suppressing the formation of free radical in PEM fuel cell operating under dry condition[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16889-16899. [8] 程宇婷, 唐浩林, 潘 牧. 全氟质子交换膜的化学降解及其稳定化研究进展[J]. 材料导报, 2011, 25(21): 29-33+42. CHENG Y T, TANG H L, PAN M. Progress of chemical degradation and stabilization of perfluocarbon proton exchange membrane[J]. Materials Review, 2011, 25(21): 29-33+42 (in Chinese). [9] ZENG X, SHUI J, LIU X, et al. Single-atom to Single-atom grafting of Pt1 onto Fe-N4 center: Pt1@ Fe-N-C multifunctional electrocatalyst with significantly enhanced properties[J]. Advanced Energy Materials, 2018, 8: 1701345. [10] GHASSEMZADEH L, HOLDCROFT S. Quantifying the structural changes of perfluorosulfonated acid ionomer upon reaction with hydroxyl radicals[J]. Journal of the American Chemical Society, 2013, 135(22): 8181-8184. [11] GHASSEMZADEH L, PECKHAM T J, WEISSBACH T, et al. Selective formation of hydrogen and hydroxyl radicals by electron beam irradiation and their reactivity with perfluorosulfonated acid ionomer[J]. Journal of the American Chemical Society, 2013, 135(42): 15923-15932. [12] ZATOİ M, ROZIÈRE J, JONES D J. Mitigation of PFSA membrane chemical degradation using composite cerium oxide-PFSA nanofibres[J]. Journal of Materials Chemistry A, 2017, 5(11): 5390-5401. [13] XUE Y, LUAN Q F, YANG D, et al. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles[J]. The Journal of Physical Chemistry C, 2011, 115(11): 4433-4438. [14] SCHLICK S, DANILCZUK M, DREWS A R, et al. Scavenging of hydroxyl radicals by ceria nanoparticles: effect of particle size and concentration[J]. The Journal of Physical Chemistry C, 2016, 120(12): 6885-6890. [15] YOOK S H, KIM H Y, KIM S J, et al. Boosting antioxidation efficiency of nonstoichiometric CeOx nanoparticles via surface passivation toward robust polymer electrolyte membrane fuel cells[J]. Chemical Engineering Journal, 2022, 432: 134419. [16] RUI Z Y, LIU J G. Understanding of free radical scavengers used in highly durable proton exchange membranes[J]. Progress in Natural Science: Materials International, 2020, 30(6): 732-742. [17] FERNANDEZ-GARCIA S, JIANG L, TINOCO M, et al. Enhanced hydroxyl radical scavenging activity by doping lanthanum in ceria nanocubes[J]. The Journal of Physical Chemistry C, 2016, 120(3): 1891-1901. [18] ZHU C Z, WEI X Q, LI W Q, et al. Crystal-plane effects of CeO2{110}and CeO2{100}on photocatalytic CO2 reduction: synergistic interactions of oxygen defects and hydroxyl groups[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14397-14406. [19] YANG S X, ZHU W P, JIANG Z P, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science, 2006, 252(24): 8499-8505. [20] ZHOU X Y, YANG Y G, LI B, et al. Unique spatial effect of Zr-doped ceria on the anti-free radicals and performance of PEMFC[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20693-20701. [21] ZHANG X Y, WEI J J, YANG H X, et al. One-pot synthesis of Mn-doped CeO2 nanospheres for CO oxidation[J]. European Journal of Inorganic Chemistry, 2013, 2013(25): 4443-4449. [22] ZHOU L, LI X X, YAO Z, et al. Transition-metal doped ceria microspheres with nanoporous structures for CO oxidation[J]. Scientific Reports, 2016, 6(1): 1-7. [23] XIAO G L, LI S, LI H, et al. Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation[J]. Microporous and Mesoporous Materials, 2009, 120(3): 426-431. [24] GERMAN E, FACCIO R, MOMBRÚ A W. A DFT +Ustudy on structural, electronic, vibrational and thermodynamic properties of TiO2polymorphs and hydrogen titanate: tuning the Hubbard ‘U-term’[J]. Journal of Physics Communications, 2017, 1(5): 055006. [25] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [26] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505-1509. [27] YOON K R, LEE K A, JO S, et al. Mussel-inspired polydopamine-treated reinforced composite membranes with self-supported CeOx radical scavengers for highly stable PEM fuel cells[J]. Advanced Functional Materials, 2019, 29(3): 1806929. [28] LI J N, CHEN C Z, WANG D G, et al. Microstructures and wear properties of YPSZ/CeO2 reinforced composites deposited by laser cladding[J]. Composites Part B: Engineering, 2012, 43(3): 896-901. [29] SUN Y Q, XU K, WEI Z X, et al. Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting[J]. Advanced Materials, 2018, 30(35): 1802121. [30] WU Z L, LI M J, HOWE J, et al. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(21): 16595-16606. [31] KEHOE A B, SCANLON D O, WATSON G W. Role of lattice distortions in the oxygen storage capacity of divalently doped CeO2[J]. Chemistry of Materials, 2011, 23(20): 4464-4468. [32] FABRIS S, DE GIRONCOLI S, BARONI S, et al. Taming multiple valency with density functionals: a case study of defective ceria[J]. Physical Review B, 2005, 71(4): 041102. [33] LI Y F, HE Y H, LIU G Q, et al. Influence of La precursors on structure and properties of CeO2-ZrO2-Al2O3 composite oxides[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(4): 739-747. [34] WANG X, LIU D P, SONG S Y, et al. Pt@CeO2 multicore@shell self-assembled nanospheres: clean synthesis, structure optimization, and catalytic applications[J]. Journal of the American Chemical Society, 2013, 135(42): 15864-15872. [35] DONG Z, HU Q M, LIU H, et al. 3D flower-like Ni doped CeO2 based gas sensor for H2S detection and its sensitive mechanism[J]. Sensors and Actuators B: Chemical, 2022, 357: 131227. [36] JIN Q J, SHEN Y S, CHU L, et al. Resource utilization of waste CeO2-based deNOx composite catalysts for hydrogen production via steam reforming[J]. Composites Part B: Engineering, 2019, 178: 107483. [37] ZHANG L, LI L L, CAO Y, et al. Promotional effect of doping SnO2 into TiO2 over a CeO2/TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. Catalysis Science & Technology, 2015, 5(4): 2188-2196. [38] YUK S, LEE D W, SONG K Y, et al. Detrimental effect of Ce4+ ion on the Pt/C catalyst in polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2020, 448: 227447. |