[1] 杨 帅, 李国华. 添加剂对锌铝尖晶石晶粒尺寸的影响[J]. 人工晶体学报, 2019, 48(3): 409-412+417. YANG S, LI G H. Effect of additive on the grain size of zinc aluminate spinel[J]. Journal of Synthetic Crystals, 2019, 48(3): 409-412+417 (in Chinese). [2] MATHUR S, VEITH M, HAAS M, et al. Single-source sol-gel synthesis of nanocrystalline ZnAl2O4: structural and optical properties[J]. Journal of the American Ceramic Society, 2004, 84(9): 1921-1928. [3] CIUPINA V, CARAZEANU I, PRODAN G. Characterization of ZnAl2O4 nanocrystals prepared by coprecipitation and microemulsion techniques[J]. Journal of Optoelectronics and Advanced Materials, 2004, 6: 1317-1322. [4] GUO Y, LU Y, LIU C, et al. Effect of ZnAl2O4 crystallization on ion-exchange properties in aluminosilicate glass[J]. Journal of Alloys and Compounds, 2021, 851: 156891. [5] MAGNAGO R, PEREIRA F M, SILVA P, et al. Infiltrated spinel-based ceramic (MgAl2O4) for dental application[J]. Materials Science Forum, 2016, 881: 176-180. [6] MOLLA A R, RODRIGUES A M, SINGH S P, et al. Crystallization, mechanical, and optical properties of transparent, nanocrystalline gahnite glass-ceramics[J]. Journal of the American Ceramic Society, 2017, 100(5): 1963-1975. [7] ZHAO T, QIN Y, ZHANG P, et al. High-performance, reaction sintered lithium disilicate glass-ceramics[J]. Ceramics International, 2014, 40(8): 12449-12457. [8] 豆高雅. 自增韧氮化硅陶瓷的制备与性能研究[J]. 陶瓷, 2019(9): 53-62. DOU G Y. Study on preparation and properties of self-toughened silicon nitride ceramics[J]. Ceramics, 2019(9): 53-62 (in Chinese). [9] LI Y H, WANG J Z, HUANG Y R. Characterization and toughening mechanism of crystallization of canasite glass-ceramics[J]. Journal of Inorganic Materials, 2015, 30(9): 977. [10] YU H, LI W, ZHU W G, et al. Study of fracture mechanism of machinable mica glass-ceramics under quasi-static conditions[J]. Glass Physics and Chemistry, 2019, 45(6): 555-564. [11] EVANS A G, CHARLES E A. Fracture toughness determinations by indentation[J]. Journal of the American Ceramic Society, 1976, 59(7/8): 371-372. [12] 李保卫, 邓磊波, 张雪峰, 等. 矿渣微晶玻璃热处理制度的优化设计[J]. 硅酸盐通报, 2012, 31(6): 1549-1553+1558. LI B W, DENG L B, ZHANG X F, et al. Optimization of heat treatment institution of slag glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(6): 1549-1553+1558 (in Chinese). [13] 陈 平, 宁青菊. 利用陕西宝鸡透辉石研制炻质墙地砖[J]. 陶瓷, 2001(3): 23-26. CHEN P, NING Q J. The study on stoneware tile with the diopside in Shaanxi Baoji[J]. Ceramics, 2001(3): 23-26 (in Chinese). [14] 王子龙, 白 银, 丁建彤, 等. 基于X射线衍射法的人工骨料中云母含量分析方法[J]. 水电能源科学, 2017, 35(3): 150-153. WANG Z L, BAI Y, DING J T, et al. Analysis method of mica content of artificial aggregate based on X-ray diffraction[J]. Water Resources and Power, 2017, 35(3): 150-153 (in Chinese). [15] TANAKA H, IYI N. Polytypes, grain growth, and fracture toughness of metal boride particulate SiC composites[J]. Journal of the American Ceramic Society, 1995, 78(5): 1223-1229. [16] 李 漠, 刘国昌. 自增韧陶瓷的增韧机理研究[J]. 机械制造与自动化, 2003, 32(3): 10-12+16. LI M, LIU G C. The research oh mechanisms of self-strengthening of ceramic[J]. Jiangsu Machine Building & Automation, 2003, 32(3): 10-12+16 (in Chinese). [17] HALDAR P K, PARYA T K, MUKHOPADHYAY S. Effect of Zr4+ dopant on microstructure, densification and thermomechanical behaviour of ZnAl2O4 spinel[J]. Interceram-International Ceramic Review, 2020, 69(6): 44-49. [18] 常卓雅, 黄 菲, 张志彬, 等. 熔融温度对透辉石结晶生长的影响[J]. 陶瓷学报, 2021, 42(6): 977-983. CHANG Z Y, HUANG F, ZHANG Z B, et al. Effect of melting temperature on the crystal growth of diopside[J]. Journal of Ceramics, 2021, 42(6): 977-983 (in Chinese). [19] SELSING J. Internal stresses in ceramics[J]. Journal of the American Ceramic Society, 1961, 44(8): 419. [20] SERBENA F C, EDGAR D Z. Internal residual stresses in glass-ceramics: a review[J]. Journal of Non-Crystalline Solids, 2012, 358(6/7): 975-984. [21] HILL T J, MECHOLSKY J J, ANUSAVICE K J. Fractal analysis of toughening behavior in 3BaO·5SiO2 glass-ceramics[J]. Journal of the American Ceramic Society, 2004, 83(3): 545-552. [22] BUTLER E P, FULLER E R Jr, CHAN H M. Interface properties for ceramic composites from a single-fiber pull-out test[J]. MRS Online Proceedings Library, 1989, 170(1): 17-24. [23] CAI H D, FABER K T, FULLER E R. Crack bridging by inclined fibers/whiskers in ceramic composites[J]. Journal of the American Ceramic Society, 1992, 75(11): 3111-3117. [24] HASSELMAN D P H, FULRATH R M. Proposed fracture theory of a dispersion-strengthened glass matrix[J]. Journal of the American Ceramic Society, 1966, 49(2): 68-72. [25] LI D, GUO J W, WANG X S, et al. Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic[J]. Materials Science and Engineering: A, 2016, 669: 332-339. [26] TANG X H, TANG C Z, SU H, et al. The effects of repeated heat-pressing on the mechanical properties and microstructure of IPS e.max Press[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40: 390-396. [27] BELLI R, WEMDLER M, CICCONI M R, et al. Fracture anisotropy in texturized lithium disilicate glass-ceramics[J]. Journal of Non-Crystalline Solids, 2018, 481: 457-469. [28] CHARITIDIS C A, KARAKASIDIS T E, KAVOURAS P, et al. The size effect of crystalline inclusions on the fracture modes in glass-ceramic materials[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2007, 19(26): 266209. [29] ALKADI L, RUSE N. Fracture toughness of two lithium disilicate dental glass ceramics[J]. The Journal of Prosthetic Dentistry, 2016, 116(4): 591-596. [30] APEL E, DEUBENER J, BERNARD A, et al. Phenomena and mechanisms of crack propagation in glass-ceramics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(4): 313-325. |