[1] SOUSA V, BOGAS J A. Comparison of energy consumption and carbon emissions from clinker and recycled cement production[J]. Journal of Cleaner Production, 2021, 306: 127277. [2] 白 玫. 中国水泥工业碳达峰、碳中和实现路径研究[J]. 价格理论与实践, 2021(4): 4-11+53. BAI M. Research on the path of achieving carbon peak and carbon neutrality in China's cement industry[J]. Price: Theory & Practice, 2021(4): 4-11+53 (in Chinese). [3] HUANG W, KAZEMI-KAMYAB H, SUN W, et al. Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC[J]. Materials & Design, 2017, 121: 36-46. [4] 林 珊. 浅析陶瓷废料资源化综合利用的研究现状[J]. 佛山陶瓷, 2018, 28(7): 4-6+16. LIN S. A study on the comprehensive utilization of ceramic waste resources[J]. Foshan Ceramics, 2018, 28(7): 4-6+16 (in Chinese). [5] 赵 威, 王 竹, 戴永刚, 等. 陶瓷废料制备轻质保温泡沫陶瓷的研究[J]. 硅酸盐通报, 2019, 38(7): 2288-2294. ZHAO W, WANG Z, DAI Y G, et al. Research on preparation of lightweight thermal insulation foam ceramics with ceramic wastes[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2288-2294 (in Chinese). [6] 税安泽, 夏海斌, 曾令可, 等. 利用抛光砖废料制备多孔保温建筑材料[J]. 硅酸盐通报, 2008, 27(1): 191-195. SHUI A Z, XIA H B, ZENG L K, et al. Preparation of porous thermal insulation building material with tile polished waste[J]. Bulletin of the Chinese Ceramic Society, 2008, 27(1): 191-195 (in Chinese). [7] LI L, LIU W F, YOU Q X, et al. Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials[J]. Journal of Cleaner Production, 2020, 259: 120853. [8] LAN H R, ZHANG Y F, CHENG M Z, et al. An intelligent humidity regulation material hydrothermally synthesized from ceramic waste[J]. Journal of Building Engineering, 2021, 40: 102336. [9] KANNAN D M, ABOUBAKR S H, EL-DIEB A S, et al. High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement[J]. Construction and Building Materials, 2017, 144: 35-41. [10] CHENG Y H, HUANG F, LI G L, et al. Test research on effects of ceramic polishing powder on carbonation and sulphate-corrosion resistance of concrete[J]. Construction and Building Materials, 2014, 55: 440-446. [11] 李方贤, 贺大东. 陶瓷废料对轻质多孔混凝土性能与孔结构影响研究[J]. 南方建筑, 2014(5): 117-119. LI F X, HE D D. The influence of ceramic wastes on the performance and pore structure of lightweight porous concrete[J]. South Architecture, 2014(5): 117-119 (in Chinese). [12] 潘 磊. 双掺陶瓷抛光粉和粉煤灰对混凝土抗压强度的影响[J]. 粉煤灰综合利用, 2013, 26(2): 43-44+49. PAN L. Effects on compressive strength of concrete mixed with ceramic polishing power and fly ash[J]. Fly Ash Comprehensive Utilization, 2013, 26(2): 43-44+49 (in Chinese). [13] KUMAR R, BHATTACHARJEE B. Study on some factors affecting the results in the use of MIP method in concrete research[J]. Cement and Concrete Research, 2003, 33(3): 417-424. [14] 刘建忠, 孙 伟, 缪昌文, 等. 矿物掺合料对低水胶比混凝土干缩和自收缩的影响[J]. 东南大学学报(自然科学版), 2009, 39(3): 580-585. LIU J Z, SUN W, MIAO C W, et al. Effect of mineral admixtures on drying and autogenous shrinkage of concrete with low water-to-binder ratio[J]. Journal of Southeast University (Natural Science Edition), 2009, 39(3): 580-585 (in Chinese). [15] 冯 浩. 超高性能混凝土早期塑性收缩开裂的研究[D]. 长沙: 湖南大学, 2014. FENG H. Study on the early stage plastic shrinkage and cracking performance of ultra high performance concrete[D]. Changsha: Hunan University, 2014 (in Chinese). [16] OGIRIGBO O R, BLACK L. Chloride binding and diffusion in slag blends: influence of slag composition and temperature[J]. Construction and Building Materials, 2017, 149: 816-825. [17] PACHECO-TORGAL F, JALALI S. Compressive strength and durability properties of ceramic wastes based concrete[J]. Materials and Structures, 2021, 54(4): 155-167. |