[1] 张振阳, 王博林, 王 旭, 等. 砂-膨润土-石膏膨胀土模型试验相似材料膨胀特性研究[J]. 硅酸盐通报, 2020, 39(7): 2211-2217. ZHANG Z Y, WANG B L, WANG X, et al. Study on swelling characteristics of similar materials in sand-bentonite-gypsum expansive soil model test[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2211-2217 (in Chinese). [2] WANG B M, LI G N, HAN J N, et al. Study on the properties of artificial flood-prevention stone made by Yellow River silt[J]. Construction and Building Materials, 2017, 144: 484-492. [3] 郑耀林, 章荣军, 郑俊杰, 等. 絮凝-固化联合处理超高含水率吹填淤泥浆的试验研究[J]. 岩土力学, 2019, 40(8): 3107-3114. ZHENG Y L, ZHANG R J, ZHENG J J, et al. Experimental study of flocculation-solidification combined treatment of hydraulically dredged mud at extra high-water content[J]. Rock and Soil Mechanics, 2019, 40(8): 3107-3114 (in Chinese). [4] 王江营, 阳 滔, 张贵金, 等. 超高含水率湖相淤泥固化试验及填筑性能分析[J]. 硅酸盐通报, 2020, 39(8): 2691-2698. WANG J Y, YANG T, ZHANG G J, et al. Curing experiment and filling performance of ultra-high water content lacustrine sludge[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2691-2698 (in Chinese). [5] LIU L, ZHOU A N, DENG Y F, et al. Strength performance of cement/slag-based stabilized soft clays[J]. Construction and Building Materials, 2019, 211: 909-918. [6] SASANIAN S, NEWSON T A. Basic parameters governing the behaviour of cement-treated clays[J]. Soils and Foundations, 2014, 54(2): 209-224. [7] 王臻华, 项 伟, 吴雪婷, 等. 碱性氧化剂对水泥固化淤泥强度的影响研究[J]. 岩土工程学报, 2019, 41(4): 693-699. WANG Z H, XIANG W, WU X T, et al. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 693-699 (in Chinese). [8] 王臻华, 吴雪婷, 项伟, 等. 高铁酸钾预处理对水泥固化淤泥强度的影响[J]. 长江科学院院报, 2019, 36(8): 131-135. WANG Z H, WU X T, XIANG W, et al. Influence of potassium ferrate pretreatment on the strength of cement-stabilized sludge[J]. Journal of Yangtze River Scientific Research Institute. 2019, 36(8): 131-135 (in Chinese). [9] SHARMA L K, SIRDESAI N N, SHARMA K M, et al. Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: a comparative study[J]. Applied Clay Science, 2018, 152: 183-195. [10] ZHENG C F, SHAN C, LIU J, et al. Microscopic adhesion properties of asphalt-mineral aggregate interface in cold area based on molecular simulation technology[J]. Construction and Building Materials, 2021, 268: 121151. [11] 侯东帅, 于 娇, 张津瑞, 等. 基于反应力场分子动力学的水化硅酸钙水解弱化机理研究[J]. 水利学报, 2021, 52(1): 34-41. HOU D S, YU J, ZHANG J R, et al. Insights on hydrolysis weakening of calcium silicate hydrate: a ReaxFF molecular dynamics study[J]. Journal of Hydraulic Engineering, 2021, 52(1): 34-41 (in Chinese). [12] 张亚云, 陈 勉, 邓 亚, 等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报, 2018, 46(10): 1489-1498. ZHANG Y Y, CHEN M, DENG Y, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018, 46(10): 1489-1498 (in Chinese). [13] 杨有威, 罗玉霞, 张青青, 等. 分子模拟技术在高岭石研究中的应用进展[J]. 硅酸盐通报, 2022, 41(1): 153-161. YANG Y W, LUO Y X, ZHANG Q Q, et al. Application progress of molecular simulation technology in kaolinite research[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 153-161 (in Chinese). [14] RAHROMOSTAQIM M, SAHIMI M. Molecular dynamics simulation of hydration and swelling of mixed-layer clays[J]. The Journal of Physical Chemistry C, 2018, 122(26): 14631-14639. [15] PENG J F, YI H, SONG S X, et al. Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: a molecular dynamic study[J]. Results in Physics, 2019, 12: 113-117. [16] BAUCHY M, QOMI M J A, ULM F J, et al. Order and disorder in calcium-silicate-hydrate[J]. The Journal of Chemical Physics, 2014, 140(21): 214503. [17] SKIPPER N T, SPOSITO G, CHANG F R C. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 2. monolayer hydrates[J]. Clays and Clay Minerals, 1995, 43(3): 294-303. [18] DU J P, ZHOU A N, LIN X S, et al. Revealing expansion mechanism of cement-stabilized expansive soil with different interlayer cations through molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2020, 124(27): 14672-14684. [19] CARRIER B, VANDAMME M, PELLENQ R J M, et al. Elastic properties of swelling clay particles at finite temperature upon hydration[J]. The Journal of Physical Chemistry C, 2014, 118(17): 8933-8943. [20] WANG Z Z, WANG H, CATES M E. Effective elastic properties of solid clays[J]. GEOPHYSICS, 2001, 66(2): 428-440. [21] MYERS R J, BERNAL S A, PROVIS J L. A thermodynamic model for C-(N-) A-S-H gel: CNASH_ss. Derivation and validation[J]. Cement and Concrete Research, 2014, 66: 27-47. [22] 郑佳敏, 管俊芳. PAC+PAM协同絮凝埃洛石的行为研究[J]. 硅酸盐通报, 2020, 39(4): 1214-1218+1223. ZHENG J M, GUAN J F. Study on flocculation behavior of halloysite by composite agent (PAC+PAM)[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1214-1218+1223 (in Chinese). [23] GARCÍA-LODEIRO I, CHERFA N, ZIBOUCHE F, et al. The role of aluminium in alkali-activated bentonites[J]. Materials and Structures, 2015, 48(3): 585-597. |