[1] LI V C. 高延性纤维增强水泥基复合材料的研究进展及应用[J]. 硅酸盐学报, 2007, 35(4): 531-536. LI V C. Progress and application of engineered cementitious composites[J]. Journal of the Chinese Ceramic Society, 2007, 35(4): 531-536 (in Chinese). [2] NAAMAN A E. A statistical theory of strength for fiber reinforced concrete[D]. Cambridge: Massachusetts Institute of technology, 1972. [3] CHANVILLARD G, RIGAUD S. Complete characterization of tensile properties of ductal UHPFRC according to the French recommendations[C]//High Performance Fiber Reinforced Cement Composites (HPFRCC-4), RILEM Publications SARL, Pro. 2003, 30: 95-113. [4] LI V C. On engineered cementitious composites (ECC)[J]. Journal of Advanced Concrete Technology, 2003, 1(3): 215-230. [5] 李贺东. 超高韧性水泥基复合材料试验研究[D]. 大连: 大连理工大学, 2009. LI H D. Experimental research on ultra high toughness cementitious composites[D]. Dalian: Dalian University of Technology, 2009 (in Chinese). [6] LI V C, KANDA T. Engineered cementitious composites for structural applications[J]. Journal of Materials in Civil Engineering, 1998, 10(2): 66-69. [7] 张栋翔. PVA 纤维水泥基复合材料(PVA-ECC)拉伸和弯曲性能试验研究[D]. 呼和浩特: 内蒙古工业大学, 2016. ZHANG D X. Experimental research on tensile and flexural properties of polyvinyl alcohol fibers engineered cementitious composites (PVA-ECC)[D]. Hohhot: Inner Mongolia University of Technology, 2016 (in Chinese). [8] 寇佳亮, 邓明科, 梁兴文. 延性纤维增强混凝土单轴拉伸性能试验研究[J]. 建筑结构, 2013, 43(1): 59-64. KOU J L, DENG M K, LIANG X W. Experimental study of uniaxial tensile properties of ductile fiber reinforced concrete[J]. Building Structure, 2013, 43(1): 59-64 (in Chinese). [9] 国家技术监督局, 中华人民共和国建设部. 建筑气候区划标准: GB 50178—1993[S]. 北京: 计划出版社, 1993. National Bureau of Technical Supervision, Ministry of Construction of the People’s Republic of China. Standards for building climate zoning: GB 50178—1993[S]. Beijing: Planning Press, 1993 (in Chinese). [10] SMITH P F F. Architecture in a climate of change: a guide to sustainable design[M]. Oxford: Architectural Press, 2001. [11] ZHANG Z G, ZHANG Q. Matrix tailoring of engineered cementitious composites (ECC) with non-oil-coated, low tensile strength PVA fiber[J]. Construction and Building Materials, 2018, 161: 420-431. [12] PAN Z F, WU C, LIU J Z, et al. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC)[J]. Construction and Building Materials, 2015, 78: 397-404. [13] MUKTADIR M G, ALAM M, RAHMAN A, et al. Comparison of compressive strength and flexural capacity between engineered cementitious composites (bendable concrete) and conventional concrete used in Bangladesh[J]. Journal of Materials and Engineering Structures, 2020, 7(1): 73-82. [14] PAUL S C, BABAFEMI A J. A review of the mechanical and durability properties of strain hardening cement-based composite (SHCC)[J]. Journal of Sustainable Cement-Based Materials, 2018, 7(1): 57-78. [15] GENCTURK B, HOSSEINI F. Evaluation of reinforced concrete and reinforced engineered cementitious composite (ECC) members and structures using small-scale testing[J]. Canadian Journal of Civil Engineering, 2015, 42(3): 164-177. [16] LEPECH M D, LI V C. Application of ECC for bridge deck link slabs[J].Materials and Structures, 2009, 42(9): 1185-1195. [17] ROKUGO K, KANDA T, YOKOTA H, et al. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan[J]. Materials and Structures, 2009, 42(9): 1197-1208. [18] 徐世烺. 浙江大学研发出能弯曲的混凝土[J]. 商品混凝土, 2018, (11), 14. XU S L. Zhejiang University develops bending concrete[J]. Ready-Mixed Concrete, 2018, (11): 14 (in Chinese). [19] YOKOTA H, ROKUGO K, SAKATA N. Recommendations for design and construction of high performance fiber reinforced cement composite with multiple fine cracks[J].Japan Society of Civil Engineers, 2008, 82: 6-10. [20] NIU Y F, WEI J X, JIAO C J. Crack propagation behavior of ultra-high-performance concrete (UHPC) reinforced with hybrid steel fibers under flexural loading[J]. Construction and Building Materials, 2021, 294: 123510. [21] KAN L L, WANG F, ZHANG Z, et al. Mechanical properties of high ductile alkali-activated fiber reinforced composites with different curing ages[J]. Construction and Building Materials, 2021, 306: 124833. [22] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. [23] ZHAO Y J, SHI T, CAO L Y, et al. Influence of steel slag on the properties of alkali-activated fly ash and blast-furnace slag based fiber reinforced composites[J]. Cement and Concrete Composites, 2021, 116: 103875. [24] 刘建忠, 韩方玉, 周华新, 等. 超高性能混凝土拉伸力学行为的研究进展[J]. 材料导报, 2017, 31(23): 24-32. LIU J Z, HAN F Y, ZHOU H X, et al. An overview on tensile behavior of ultra-high performance concrete[J]. Materials Review, 2017, 31(23): 24-32 (in Chinese). [25] 杨梦晨, 陈旭栋, 蔡 鹏, 等. 早期时间序列分类方法研究综述[J]. 华东师范大学学报(自然科学版), 2021(5): 115-133. YANG M C, CHEN X D, CAI P, et al. Survey of early time series classification methods[J]. Journal of East China Normal University (Natural Science), 2021(5): 115-133 (in Chinese). [26] 杨国丽. 基于时间序列的流量预测算法综述[J]. 电子元器件与信息技术, 2021, 5(3): 165-167. YANG G L. Overview of traffic prediction algorithms based on time series[J]. Electronic Component and Information Technology, 2021, 5(3): 165-167 (in Chinese). [27] MÉLARD G. An indirect proof for the asymptotic properties of VARMA model estimators[J]. Econometrics and Statistics, 2022, 21: 96-111. [28] 董清利. 时间序列组合预测模型的建立与应用研究[D]. 大连: 东北财经大学, 2019. DONG Q L. Research and application of time series combined forecasting models[D]. Dalian: Dongbei University of Finance and Economics, 2019 (in Chinese). [29] ZIEGEL E R. Applied econometric time series[J]. Technometrics, 1995, 37(4): 469-470. [30] 韩永贵, 韩 磊, 黄晓宇, 等. 基于指数平滑和ARIMA模型的西北地区饱和水汽压差预测[J]. 干旱区研究, 2021, 38(2): 303-313. HAN Y G, HAN L, HUANG X Y, et al. Prediction of vapor pressure deficit in Northwest China based on exponential and ARIMA models[J]. Arid Zone Research, 2021, 38(2): 303-313 (in Chinese). [31] 张姝玮, 郭忠印, 陈立辉. 基于自回归求积移动平均的制动器温度预测方法[J]. 吉林大学学报(工学版), 2020, 50(6): 2080-2086. ZHANG S W, GUO Z Y, CHEN L H. Brake temperature prediction method based on autoregressive integrated moving average model[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2080-2086 (in Chinese). [32] 余华龙, 徐国林. 基于MEEMD和时变VARMA模型的地震动噪声清除及基线修正[J]. 地震工程与工程振动, 2022, 42(2): 172-180. YU H L, XU G L. Earthquake signal noise filtering and baseline correction based on MEEMD and time-varying VARMA model[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(2): 172-180 (in Chinese). [33] 胡 盈, 吴 静. 基于ARIMA模型的降水空间特征分析及预测[J]. 江西科学, 2021, 39(1): 99-104. HU Y, WU J. Analysis and prediction of precipitation spatial characteristics based on ARIMA model[J]. Jiangxi Science, 2021, 39(1): 99-104 (in Chinese). [34] 白仲林, 林 桐, 张 珺. SVARMA模型的设定、方差分解分析和应用[J]. 统计研究, 2014, 31(5): 85-94. BAI Z L, LIN T, ZHANG J. The assumptions, variance decomposition analysis and application in SVARMA model[J]. Statistical Research, 2014, 31(5): 85-94 (in Chinese). [35] 孙晓磊, 丁亚委, 郭克余, 等. 基于ARMA模型的船舶海水冷却系统参数预测[J]. 计算机测量与控制, 2017, 25(7): 285-289. SUN X L, DING Y W, GUO K Y, et al. Ship seawater cooling system parameter prediction based on ARMA model[J]. Computer Measurement & Control, 2017, 25(7): 285-289 (in Chinese). |