[1] 潘志鹏. 影响钢筋混凝土结构耐久性因素分析与控制措施探讨[J]. 福建建材,2015(7): 15-17. PAN Z P. Analysis of factors affecting durability of reinforced concrete structure and discussion on control measures[J]. Fujian Building Materials, 2015(7): 15-17 (in Chinese). [2] 金伟良, 薛 文, 陈 驹. 海岸及近海混凝土材料耐久性设计指标的影响参数分析[J]. 建筑结构学报, 2011, 32(12): 86-97. JIN W L, XUE W, CHEN J. Effecting coefficients for concrete structure durability design index[J]. Journal of Building Structures, 2011, 32(12): 86-97 (in Chinese). [3] 叶梦琦. 氯盐侵蚀下混凝土结构裂缝控制模糊可靠度研究[D]. 武汉: 湖北工业大学, 2020. YE M Q. Research on fuzzy reliability of crack control in concrete structure under chloride erosion[D]. Wuhan: Hubei University of Technology, 2020 (in Chinese). [4] 李 悦, 丁庆军, 胡曙光. 石灰石矿粉在水泥混凝土中的应用[J]. 武汉理工大学学报, 2007, 29(3): 35-37+41. LI Y, DING Q J, HU S G. Utilization of limestone as mineral admixture in cement and concrete[J]. Journal of Wuhan University of Technology, 2007, 29(3): 35-37+41 (in Chinese). [5] BONAVETTI V L, RAHHAL V F, IRASSAR E F. Studies on the carboaluminate formation in limestone filler-blended cements[J]. Cement and Concrete Research, 2001, 31(6): 853-859. [6] KUZEL H J, PÖLLMANN H. Hydration of C3A in the presence of Ca(OH)2, CaSO4·2H2O and CaCO3[J]. Cement and Concrete Research, 1991, 21(5): 885-895. [7] SHI Z G, GEIKER M R, DE WEERDT K, et al. Role of calcium on chloride binding in hydrated Portland cement-metakaolin-limestone blends[J]. Cement and Concrete Research, 2017, 95: 205-216. [8] WANG Y Y, SHUI Z H, GAO X, et al. Utilizing coral waste and metakaolin to produce eco-friendly marine mortar: hydration, mechanical properties and durability[J]. Journal of Cleaner Production, 2019, 219: 763-774. [9] WANG Y Y, SHUI Z H, YU R, et al. Chloride ingress and binding of coral waste filler-coral waste sand marine mortar incorporating metakaolin[J]. Construction and Building Materials, 2018, 190: 1069-1080. [10] BALONIS M, LOTHENBACH B, LE SAOUT G, et al. Impact of chloride on the mineralogy of hydrated Portland cement systems[J]. Cement and Concrete Research, 2010, 40(7): 1009-1022. [11] MATSCHEI T, LOTHENBACH B, GLASSER F P. The AFm phase in Portland cement[J]. Cement and Concrete Research, 2007, 37(2): 118-130. [12] GLASSER F P, KINDNESS A, STRONACH S A. Stability and solubility relationships in AFm phases[J]. Cement and Concrete Research, 1999, 29(6): 861-866. [13] 张 健. 严酷环境下多种侵蚀性离子交互作用的热动力学机理[D]. 南京: 东南大学, 2018. ZHANG J. Thermodynamic mechanism of various corrosive ion interactions in sever environments[D]. Nanjing: Southeast University, 2018 (in Chinese). [14] 严子伟, 刘 黎, 孙晋峰, 等. 铝酸三钙和碳酸钙对硅酸盐水泥早期力学强度及凝结时间的协同作用研究[J]. 硅酸盐通报, 2021, 40(5): 1470-1476. YAN Z W, LIU L, SUN J F, et al. Synergistic effect of tricalcium aluminate and calcium carbonate on early mechanical strength and setting time of Portland cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1470-1476 (in Chinese). [15] 刘家文. 碳酸钙-铝酸盐矿物复合体系的水化行为与胶凝性能研究[D]. 重庆: 重庆大学, 2020. LIU J W. Research on hydration behavior and cementitious properties of calcium carbonate and aluminate minerals composite systems[D]. Chongqing: Chongqing University, 2020 (in Chinese). [16] ANTONI M, ROSSEN J, MARTIRENA F, et al. Cement substitution by a combination of metakaolin and limestone[J]. Cement and Concrete Research, 2012, 42(12): 1579-1589. [17] VANCE K, AGUAYO M, OEY T, et al. Hydration and strength development in ternary Portland cement blends containing limestone and fly ash or metakaolin[J]. Cement and Concrete Composites, 2013, 39: 93-103. [18] CABRERA J, ROJAS M F. Mechanism of hydration of the metakaolin-lime-water system[J]. Cement and Concrete Research, 2001, 31(2): 177-182. [19] 马保国, 单志欣, 谭洪波, 等. 不同细度的铝酸三钙对氯离子固化能力的影响[J]. 武汉理工大学学报, 2017, 39(12): 1-6. MA B G, SHAN Z X, TAN H B, et al. Influence of the fineness of tricalcium aluminate on chloride ion binding capability[J]. Journal of Wuhan University of Technology, 2017, 39(12): 1-6 (in Chinese). [20] 常 钧, 熊 苍. 碱环境下单碳型水化碳铝酸钙加速碳酸化机理[J]. 大连理工大学学报, 2019, 59(5): 536-542. CHANG J, XIONG C. Accelerated carbonation mechanism of monocarboaluminate under alkaline environment[J]. Journal of Dalian University of Technology, 2019, 59(5): 536-542 (in Chinese). [21] 史天尧, 陈星宇, 张 敏, 等. 水泥基材料中氯离子结合机理及其影响因素研究进展[J]. 硅酸盐通报, 2021, 40(1): 13-24. SHI T Y, CHEN X Y, ZHANG M, et al. Mechanism of chloride binding and its influence factors in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 13-24 (in Chinese). [22] 张鸿飞, 叶家元, 任俊儒, 等. -10 ℃条件下氯化钙溶液对硫铝酸盐水泥性能的影响[J]. 硅酸盐学报, 2022, 50(11): 2834-2843. ZHANG H F, YE J Y, REN J R, et al. Effect of calcium chloride solution on performance of calcium sulphoaluminate cement at -10 ℃[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2834-2843 (in Chinese). |