[1] 杨楚航, 贾绍辉, 马晔城, 等. 全氧燃烧高铝玻璃熔窑三维数值工程仿真[J]. 浙江大学学报(工学版), 2021, 55(2): 410-418. YANG C H, JIA S H, MA Y C, et al. Three-dimensional numerical engineering simulation of oxy-fuel high alumina glass furnace[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 410-418 (in Chinese). [2] 张范斌, 温 治, 苏福永, 等. 浮法玻璃退火过程中应力变化的数值模拟[J]. 硅酸盐通报, 2012, 31(5): 1057-1061. ZHANG F B, WEN Z, SU F Y, et al. Numerical simulation for variation of residual stress in annealing process of float glass[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1057-1061 (in Chinese). [3] MONNOYER F, LOCHEGNIES D. Heat transfer and flow characteristics of the cooling system of an industrial glass tempering unit[J]. Applied Thermal Engineering, 2008, 28(17/18): 2167-2177. [4] ARAI M, KATO Y, KODERA T. Characterization of the thermo-viscoelastic property of glass and numerical simulation of the press molding of glass lens[J]. Journal of Thermal Stresses, 2009, 32(12): 1235-1255. [5] BÉCHET F, SIEDOW N, LOCHEGNIES D. Two-dimensional finite element modeling of glass forming and tempering processes, including radiative effects[J]. Finite Elements in Analysis and Design, 2015, 94: 16-23. [6] 黄 明, 宋 刚, 石宪章, 等. 基于模拟仿真的吹制成型扑气环缺陷产生机理分析[J]. 硅酸盐通报, 2018, 37(3): 1033-1038. HUANG M, SONG G, SHI X Z, et al. Mechanism analysis of compacting blowing circle defect in glass blowing forming process based on numerical simulation[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 1033-1038 (in Chinese). [7] 陈淑勇, 李从云, 王照猛, 等. 浮法工艺玻璃带成形过程的模拟分析[J]. 硅酸盐学报, 2021, 49(2): 340-346. CHEN S Y, LI C Y, WANG Z M, et al. Simulations on glass ribbon forming behavior in float process[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 340-346 (in Chinese). [8] 李建伟. 汽车玻璃压制成型数值仿真分析[J]. 玻璃搪瓷与眼镜, 2022, 50(8): 31-37. LI J W. Numerical simulation analysis of automobile glass press forming[J]. Glass Enamel & Ophthalmic Optics, 2022, 50(8): 31-37 (in Chinese). [9] 沈长治. 水平拉管技术的进步[J]. 玻璃与搪瓷, 1986, 14(1): 42-47. SHEN C Z. Progress of horizontal pipe drawing technology[J]. Glass & Enamel, 1986, 14(1): 42-47 (in Chinese). [10] XU S Q, LIU S M. Numerical simulation and optimisation of bubbling on float glass furnace. Part 1: the bubbling influence on glass fluid flow[J]. Glass Technology: European Journal of Glass Science and Technology Part A, 2020, 61(3): 77-84. [11] SONG Y, WON C, KANG S H, et al. Characterization of glass viscosity with parallel plate and rotational viscometry[J]. Journal of Non-Crystalline Solids, 2018, 486: 27-35. [12] 李 宏, 李璟玮, 陈 鹏, 等. 基于有限元分析的真空玻璃传热性能数值模拟研究[J]. 硅酸盐通报, 2022, 41(4): 1148-1156+1176. LI H, LI J W, CHEN P, et al. Numerical simulation of heat transfer performance of vacuum glazing based on finite element analysis[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1148-1156+1176 (in Chinese). [13] 胡平超, 谢 俊, 韩建军, 等. 玻璃纤维窑炉性能探究和优化[J]. 燕山大学学报, 2017, 41(4): 329-334. HU P C, XIE J, HAN J J, et al. Research and optimization on performance of glass fiber kilns[J]. Journal of Yanshan University, 2017, 41(4): 329-334 (in Chinese). [14] 赵军明. 求解辐射传递方程的谱元法[D]. 哈尔滨: 哈尔滨工业大学, 2007: 11-12. ZHAO J M. Spectral element method for solving radiative transfer equation[D]. Harbin: Harbin Institute of Technology, 2007: 11-12 (in Chinese). [15] 安 钢, 秦新锋, 宋学文, 等. 利用玻璃密度进行生产质量控制[J]. 玻璃, 2021, 48(8): 23-29. AN G, QIN X F, SONG X W, et al. Production quality control by measuring glass density[J]. Glass, 2021, 48(8): 23-29 (in Chinese). [16] 杨林锟. 3D曲面玻璃热弯工艺预热阶段传热过程分析[D]. 武汉: 华中科技大学, 2020: 24-27. YANG L K. Study on the heat transfer process in preheating stage of 3D curved glass hot bending process[D]. Wuhan: Huazhong University of Science and Technology, 2020: 24-27 (in Chinese). [17] 马 果, 李 超, 朱振鹏, 等. 基于单摆实验利用霍尔元件测量空气的动力学粘度[J]. 大学物理实验, 2022, 35(2): 45-48. MA G, LI C, ZHU Z P, et al. The dynamic viscosity of air is measured by hall element based on pendulum experiment[J]. Physical Experiment of College, 2022, 35(2): 45-48 (in Chinese). |