[1] 李 哲. 纯电动汽车磷酸铁锂电池性能研究[D]. 北京: 清华大学,2011. LI Z. Characterization research of LiFeO4 batteries for application on pure electric vehicles[D]. Beijing: Tsinghua University, 2011 (in Chinese). [2] 安富强, 赵洪量, 程 志, 等. 纯电动车用锂离子电池发展现状与研究进展[J]. 工程科学学报, 2019, 41(1): 22-42. AN F Q, ZHAO H L, CHENG Z, et al. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41(1): 22-42 (in Chinese). [3] 赵新兵, 谢 健. 新型锂离子电池正极材料LiFePO4的研究进展[J]. 机械工程学报, 2007, 43(1): 69-76. ZHAO X B, XIE J. Recent development of LiFePO4 cathode materials for lithium-ion batteries[J]. Chinese Journal of Mechanical Engineering, 2007, 43(1): 69-76 (in Chinese). [4] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194. [5] 李 杰, 陈超美. CiteSpace: 科技文本挖掘及可视化[M]. 2版. 北京: 首都经济贸易大学出版社, 2017. LI J, CHEN C M. CiteSpace: text mining and visualization in scientific literature[M]. 2nd ed. Beijing: Capital University of Economics and Business Press, 2017 (in Chinese). [6] 胡华坤, 李新丽, 薛文东, 等. 基于CiteSpace的锂离子电池用低温电解液知识图谱分析[J]. 储能科学与技术, 2022, 11(1): 379-396. HU H K, LI X L, XUE W D, et al. Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace[J]. Energy Storage Science and Technology, 2022, 11(1): 379-396 (in Chinese). [7] 黄海港, 何利华. 退役锂电池回收知识图谱分析[J]. 中国有色金属学报, 2021, 31(7): 1965-1978. HUANG H G, HE L H. Knowledge map analysis of recycling of waste lithium ion batteries[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(7): 1965-1978 (in Chinese). [8] 秦建华, 李 娜, 金 泰, 等. 基于Vosviewer与Citespace对电动汽车充电负荷领域的计量分析[J]. 科学技术与工程, 2022, 22(10): 4196-4205. QIN J H, LI N, JIN T, et al. Metrological analysis of electric vehicle charging load based on vosviewer and citespace[J]. Science Technology and Engineering, 2022, 22(10): 4196-4205 (in Chinese). [9] XU X L, QI C Y, HAO Z D, et al. The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery[J]. Nano-Micro Letters, 2017, 10(1): 1-9. [10] YUAN Y, WANG B, SONG R S, et al. A LiFePO4/Li2Sn hybrid system with enhanced Li-ion storage performance[J]. New Journal of Chemistry, 2018, 42(9): 6626-6630. [11] ZHANG Q, SHA Z F, CUI X, et al. Incorporation of redox-active polyimide binder into LiFePO4 cathode for high-rate electrochemical energy storage[J]. Nanotechnology Reviews, 2020, 9(1): 1350-1358. [12] HUANG C Y, KUO T R, YOUGBARÉ S, et al. Design of LiFePO4 and porous carbon composites with excellent high-rate charging performance for lithium-ion secondary battery[J]. Journal of Colloid and Interface Science, 2022, 607: 1457-1465. [13] TIAN J P, XIONG R, SHEN W X, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles: a deep-learning enabled approach[J]. Applied Energy, 2021, 291: 116812. [14] SHIBAGAKI T, MERLA Y, OFFER G J. Tracking degradation in lithium iron phosphate batteries using differential thermal voltammetry[J]. Journal of Power Sources, 2018, 374: 188-195. [15] LI Y W, WANG C, GONG J F. A wavelet transform-adaptive unscented Kalman filter approach for state of charge estimation of LiFePO4 battery[J]. International Journal of Energy Research, 2018, 42(2): 587-600. [16] 周 伟, 符冬菊, 刘伟峰, 等. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. ZHOU W, FU D J, LIU W F, et al. Research progress on recycling technology of waste lithium iron phosphate power battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864 (in Chinese). [17] YANG Y X, MENG X Q, CAO H B, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133. [18] JIN H, ZHANG J L, WANG D D, et al. Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature[J]. Green Chemistry, 2022, 24(1): 152-162. [19] XU Y L, QIU X J, ZHANG B C, et al. Start from the source: direct treatment of a degraded LiFePO4 cathode for efficient recycling of spent lithium-ion batteries[J]. Green Chemistry, 2022, 24(19): 7448-7457. [20] WANG Z X, HUANG Y, WANG X, et al. Advanced solid-state electrolysis for green and efficient spent LiFePO4 cathode material recycling: prototype reactor tests[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12318-12328. [21] ZHANG J L, HU J T, LIU Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631. [22] LI L, BIAN Y F, ZHANG X X, et al. A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries[J]. Waste Management, 2019, 85: 437-444. [23] LIANG Q, YUE H F, WANG S F, et al. Recycling and crystal regeneration of commercial used LiFePO4 cathode materials[J]. Electrochimica Acta, 2020, 330: 135323. [24] YADAV P, JIE C J, TAN S, et al. Recycling of cathode from spent lithium iron phosphate batteries[J]. Journal of Hazardous Materials, 2020, 399: 123068. [25] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: test, modeling and prevention[D]. Beijing: Tsinghua University, 2016 (in Chinese). [26] 平 平. 锂离子电池热失控与火灾危险性分析及高安全性电池体系研究[D]. 合肥: 中国科学技术大学, 2014. PING P. Lithium ion battery thermal runaway and fire risk analysis and the development on the safer battery system[D]. Hefei: University of Science and Technology of China, 2014 (in Chinese). [27] HUANG Z H, LI H, MEI W X, et al. Thermal runaway behavior of lithium iron phosphate battery during penetration[J]. Fire Technology, 2020, 56(6): 2405-2426. [28] BUGRYNIEC P J, DAVIDSON J N, CUMMING D J, et al. Pursuing safer batteries: thermal abuse of LiFePO4 cells[J]. Journal of Power Sources, 2019, 414: 557-568. [29] LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949. [30] MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. [31] PENG Y, YANG L Z, JU X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. Journal of Hazardous Materials, 2020, 381: 120916. [32] WANG S J, RAFIZ K, LIU J L, et al. Effects of lithium dendrites on thermal runaway and gassing of LiFePO4 batteries[J]. Sustainable Energy & Fuels, 2020, 4(5): 2342-2351. [33] MONIKA K, CHAKRABORTY C, ROY S, et al. An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles[J]. Journal of Energy Storage, 2021, 35: 102301. [34] MENG X D, LI S, FU W D, et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires[J]. eTransportation, 2022, 11: 100142. |