[1] 崔荣政, 白海丹, 高永峰, 等. 磷石膏综合利用现状及“十四五”发展趋势[J]. 无机盐工业, 2022, 54(4): 1-4. CUI R Z, BAI H D, GAO Y F, et al. Current situation of comprehensive utilization of phosphogypsum and its development trend of 14th Five-Year Plan[J]. Inorganic Chemicals Industry, 2022, 54(4): 1-4 (in Chinese). [2] 胡 勇. 高硫胶凝材料中Ba2+稳定/控制AFt形成的机理研究[D]. 武汉: 武汉理工大学, 2019. HU Y. Study on the mechanism of Ba2+ stabilize/control AFt formation in the high sulfur cementitious materials[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). [3] 李光明, 李 霞, 贾 磊, 等. 国内外磷石膏处理和处置概况[J]. 无机盐工业, 2012, 44(10): 11-13. LI G M, LI X, JIA L, et al. General situation of treatment and disposal of phosphogypsum[J]. Inorganic Chemicals Industry, 2012, 44(10): 11-13 (in Chinese). [4] CONTRERAS M, TEIXEIRA S R, SANTOS G T A, et al. Influence of the addition of phosphogypsum on some properties of ceramic tiles[J]. Construction and Building Materials, 2018, 175: 588-600. [5] 卢文达. 磷石膏制备α高强石膏的晶相调控与绿色制造研究[D]. 武汉: 武汉理工大学, 2019. LU W D. Crystal phase regulation and green manufacturing of preparation of α high-strength gypsum from phosphogypsum[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). [6] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569-1581. QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). [7] 王 硕, 常 钧, 季 娟. 硫铝酸盐水泥膨胀性能与水化胶凝特性的关系研究[J]. 水泥工程, 2018(5): 4-7+20. WANG S, CHANG J, JI J. Relationship between expansion performance of calcium sulphoaluminate cement and its hydration and cementation characteristics[J]. Cement Engineering, 2018(5): 4-7+20 (in Chinese). [8] GU K, CHEN B. Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction[J]. Construction and Building Materials, 2020, 231: 117195. [9] 彭家惠. 建筑石膏减水剂与缓凝剂作用机理研究[D]. 重庆: 重庆大学, 2004. PENG J H. Study on action mechanism of water reducers and retarders for building gypsum[D]. Chongqing: Chongqing University, 2004 (in Chinese). [10] 张兰芳, 刘丽娜, 曹 胜. 响应面方法优化碱激发矿渣-石粉水泥砂浆的研究[J]. 材料导报, 2017, 31(24): 15-19. ZHANG L F, LIU L N, CAO S. Optimization of alkali activated slag-limestone powder mortar by response surface methodology[J]. Materials Reports, 2017, 31(24): 15-19 (in Chinese). [11] 吕晓娟. 硫铝酸盐水泥对建筑石膏性能的影响[J]. 新型建筑材料, 2019, 46(7): 53-55+74. LV X J. Effect of sulphoaluminate cement on properties of building gypsum[J]. New Building Materials, 2019, 46(7): 53-55+74 (in Chinese). [12] 周银笙, 谢 浪, 赵银霜, 等. 硫铝酸盐水泥改性脱硫石膏复合材料研究[J]. 非金属矿, 2021, 44(3): 17-20. ZHOU Y S, XIE L, ZHAO Y S, et al. Study on composite material of sulphoaluminate cement modified desulfurized gypsum[J]. Non-Metallic Mines, 2021, 44(3): 17-20 (in Chinese). [13] 瞿金东, 彭家惠, 吴 莉, 等. 建筑石膏外加剂研究进展[J]. 材料科学与工程学报, 2004, 22(3): 466-469. QU J D, PENG J H, WU L, et al. Research situation and development tendency of admixtures for building gypsum[J]. Journal of Materials Science and Engineering, 2004, 22(3): 466-469 (in Chinese). [14] 冯启彪, 吴 冰, 李玉珍, 等. 骨胶蛋白质石膏缓凝剂的研究[J]. 新型建筑材料, 2007, 34(6): 5-7. FENG Q B, WU B, LI Y Z, et al. Study on building gypsum retarder of bone glue protein[J]. New Building Materials, 2007, 34(6): 5-7 (in Chinese). [15] KOCKAL N U, OZTURAN T. Optimization of properties of fly ash aggregates for high-strength lightweight concrete production[J]. Materials & Design, 2011, 32(6): 3586-3593. [16] 李素琼, 王焕涵. 中心组合设计法优化CuCl2为活化剂的茶梗活性炭制备工艺[J]. 科技资讯, 2013, 11(27): 55-59. LI S Q, WANG H H. A central composite design was used to optimize the CuCl2 as the activating agent tea stalk activated carbon preparation[J]. Science & Technology Information, 2013, 11(27): 55-59 (in Chinese). [17] 张旭梦, 胡术刚, 袁 鹏. 响应面-正交法制备工业固废基胶凝材料试验研究[J]. 安徽理工大学学报(自然科学版), 2020, 40(4): 67-75. ZHANG X M, HU S G, YUAN P. Experimental study on preparation of industrial solid waste based cementitious materials by response surface orthogonal method[J]. Journal of Anhui University of Science and Technology (Natural Science), 2020, 40(4): 67-75 (in Chinese). [18] 张文艳, 林华夏, 王 帅, 等. 减缩剂对碱激发煤矸石-矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2022, 41(2): 526-535. ZHANG W Y, LIN H X, WANG S, et al. Effect of shrinkage reducing agent on properties of alkali-activated coal gangue-slag cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 526-535 (in Chinese). [19] 沈 燕. 利用磷石膏制备高硫型贝利特硫铝酸盐水泥的研究[D]. 重庆: 重庆大学, 2015. SHEN Y. Synthesis of sulfate-rich belite sulfoaluminate cement with phosphogypsum[D]. Chongqing: Chongqing University, 2015 (in Chinese). [20] 迟 琳. 高贝利特硫铝酸盐水泥活化和水化机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. CHI L. Study on the activation and hydration mechanism of belite calcium sulfoaluminate cement[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). [21] LIU X H, MA B G, TAN H B, et al. Effect of aluminum sulfate on the hydration of Portland cement, tricalcium silicate and tricalcium aluminate[J]. Construction and Building Materials, 2020, 232: 117179. [22] JIN Z H, MA B G, SU Y, et al. Effect of calcium sulphoaluminate cement on mechanical strength and waterproof properties of beta-hemihydrate phosphogypsum[J]. Construction and Building Materials, 2020, 242: 118198. |