硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (2): 575-586.
所属专题: 资源综合利用
许星, 张金才, 王宝凤, 郭彦霞, 程芳琴
收稿日期:
2022-10-14
修订日期:
2022-11-26
出版日期:
2023-02-15
发布日期:
2023-03-07
通信作者:
张金才,博士,副教授,E-mail:chaner9944@126.com
作者简介:
许 星(1999—),男,硕士研究生。主要从事玄武岩纤维改性的研究。E-mail:1650411824@qq.com
基金资助:
XU Xing, ZHANG Jincai, WANG Baofeng, GUO Yanxia, CHENG Fangqin
Received:
2022-10-14
Revised:
2022-11-26
Online:
2023-02-15
Published:
2023-03-07
摘要: 纤维增强复合材料的力学性能主要受到纤维性能、树脂性能以及纤维与树脂间的复合材料界面性能影响。在实际应用中,纤维表面改性是增强纤维和基体之间结合力,拓展应用领域的关键。本文综述了国内外玄武岩纤维的几种改性工艺,总结了各种表面改性方法的作用机理及其改性效果,并简要介绍了玄武岩纤维的性质及应用。研究发现,玄武岩纤维经过改性后,其性能均有所改善,如表面活性提高、强度增大、界面黏结力增强等,这有利于其作为增强体制备各种性能优异的复合材料,从而应用于土木建筑、汽车船舶、石油化工、航空航天等领域。此外,本文最后还指出了玄武岩纤维改性领域目前存在的主要问题,并对未来该领域研究发展方向做出展望。
中图分类号:
许星, 张金才, 王宝凤, 郭彦霞, 程芳琴. 玄武岩纤维表面改性的研究进展[J]. 硅酸盐通报, 2023, 42(2): 575-586.
XU Xing, ZHANG Jincai, WANG Baofeng, GUO Yanxia, CHENG Fangqin. Research Progress on Surface Modification of Basalt Fiber[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 575-586.
[1] 霍冀川, 雷永林, 王海滨, 等. 玄武岩纤维的制备及其复合材料的研究进展[J]. 材料导报, 2006, 20(s1): 382-385. HUO J C, LEI Y L, WANG H B, et al. Progress of study on the preparation of basalt fibet and composite material of basalt fiber[J]. Materials Review, 2006, 20(s1): 382-385 (in Chinese). [2] YAO D W, YIN G Z, BI Q Q, et al. Basalt fiber modified ethylene vinyl acetate/magnesium hydroxide composites with balanced flame retardancy and improved mechanical properties[J]. Polymers, 2020, 12(9): 2107. [3] LEBEDEV M P, STARTSEV O V, KYCHKIN A K. The effects of aggressive environments on the mechanical properties of basalt plastics[J]. Heliyon, 2020, 6(3): e03481. [4] 吴智深, 汪 昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5): 1-14. WU Z S, WANG X, SHI J Z. Advancement of basalt fiber-reinforced polymers (BFRPs) and the novel structures reinforced with BFRPs[J]. Engineering Mechanics, 2020, 37(5): 1-14 (in Chinese). [5] ZHENG Y X, ZHANG P, CAI Y C, et al. Cracking resistance and mechanical properties of basalt fibers reinforced cement-stabilized macadam[J]. Composites Part B: Engineering, 2019, 165: 312-334. [6] CHEN X F, ZHANG Y S, HUO H B, et al. Study of high tensile strength of natural continuous basalt fibers[J]. Journal of Natural Fibers, 2020, 17(2): 214-222. [7] 刘昶江, 仝晓聪, 刘 忠, 等. 玄武岩纤维原料特征分析[J]. 硅酸盐通报, 2020, 39(12): 3858-3865. LIU C J, TONG X C, LIU Z, et al. Analysis of basalt fiber raw material characteristics[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3858-3865 (in Chinese). [8] LIU L, HUANG Y, LIU Z H. Laboratory evaluation of asphalt binder modified with crumb rubber and basalt fiber[J]. Advances in Civil Engineering, 2020, 2020: 1-10. [9] LIU C J, TONG X C, YANG C C, et al. Preparation and dielectric properties of the amorphous basaltic glass[J]. Silicon, 2022, 14(7): 3623-3628. [10] 张晓青, 冯 静, 王仁舒, 等. 玄武岩纤维的研究进展及应用[J]. 山东化工, 2019, 48(4): 46-47. ZHANG X Q, FENG J, WANG R S, et al. Research progress and application of basalt fiber[J]. Shandong Chemical Industry, 2019, 48(4): 46-47 (in Chinese). [11] MITTAL G, RHEE K Y, MIŠKOVIĆ-STANKOVIĆ V, et al. Reinforcements in multi-scale polymer composites: processing, properties, and applications[J]. Composites Part B: Engineering, 2018, 138: 122-139. [12] MONALDO E, NERILLI F, VAIRO G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composite Structures, 2019, 214: 246-263. [13] SEGHINI M C, TOUCHARD F, SARASINI F, et al. Engineering the interfacial adhesion in basalt/epoxy composites by plasma polymerization[J]. Composites Part A: Applied Science and Manufacturing, 2019, 122: 67-76. [14] LANDUCCI G, ROSSI F, NICOLELLA C, et al. Design and testing of innovative materials for passive fire protection[J]. Fire Safety Journal, 2009, 44(8): 1103-1109. [15] 蔺建廷, 胡 韬. 玄武岩纤维材料性能及应用[J]. 黑龙江科技信息, 2009(20): 35. LIN J T, HU T. Properties and application of basalt fiber materials[J]. Heilongjiang Science and Technology Information, 2009(20): 35 (in Chinese). [16] 丁宝明, 张 蕾, 刘嘉麒. 中国玄武岩纤维材料产业的发展态势[J]. 中国矿业, 2019, 28(10): 1-5. DING B M, ZHANG L, LIU J Q. Development trend of basalt fiber materials industry in China[J]. China Mining Magazine, 2019, 28(10): 1-5 (in Chinese). [17] 董武斌, 王 芳. 不同地区玄武岩品质及路用性能评价[J]. 公路交通技术, 2008, 24(1): 9-11. DONG W B, WANG F. Evaluation on quality of basalt in different areas and their properties for use on road[J]. Technology of Highway and Transport, 2008, 24(1): 9-11 (in Chinese). [18] DING L N, LIU Y, LIU J X, et al. Correlation analysis of tensile strength and chemical composition of basalt fiber roving[J]. Polymer Composites, 2019, 40(7): 2959-2966. [19] LI Z N, SHEN A Q, ZENG G P, et al. Research progress on properties of basalt fiber-reinforced cement concrete[J]. Materials Today Communications, 2022, 33: 104824. [20] 张 玮, 谭艳君, 刘姝瑞, 等. 玄武岩纤维的性能及应用[J]. 纺织科学与工程学报, 2022, 39(1): 85-89. ZHANG W, TAN Y J, LIU S R, et al. Properties and applications of basalt fiber[J]. Journal of Textile Science and Engineering, 2022, 39(1): 85-89 (in Chinese). [21] MENG Y, LIU J X, XIA Y, et al. Preparation and characterization of continuous basalt fibre with high tensile strength[J]. Ceramics International, 2021, 47(9): 12410-12415. [22] 张金才, 王志英, 程芳琴. 固废基无机纤维的研究进展[J]. 材料导报, 2021, 35(7): 7019-7026. ZHANG J C, WANG Z Y, CHENG F Q. Progress on the study of solid waste based inorganic fibers[J]. Materials Reports, 2021, 35(7): 7019-7026 (in Chinese). [23] MA Z B, TIAN X Q, LIAO H Q, et al. Improvement of fly ash fusion characteristics by adding metallurgical slag at high temperature for production of continuous fiber[J]. Journal of Cleaner Production, 2018, 171: 464-481. [24] YANG C C, LIU Z, TONG X C, et al. Effects of raw material homogenization on the structure of basalt melt and performance of fibers[J]. Ceramics International, 2022, 48(9): 11998-12005. [25] 刘学慧. 连续玄武岩纤维与碳纤维、芳纶、玻璃纤维的对比及其特性概述[J]. 山西科技, 2014, 29(1): 87-90. LIU X H. Overview of the comparison of CBF (continuous basalt fiber) with CF (carbon fiber), AF (aramid fiber) and GF (glass fiber) and their properties[J]. Shanxi Science and Technology, 2014, 29(1): 87-90 (in Chinese). [26] ZHANG J C, WEN X H, CHENG F Q. Preparation, thermal stability and mechanical properties of inorganic continuous fibers produced from fly ash and magnesium slag[J]. Waste Management, 2021, 120: 156-163. [27] HSIEH P Y, KWONG K S, BENNETT J. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes[J]. Fuel Processing Technology, 2016, 142: 13-26. [28] KONG L X, BAI J, LI W, et al. The internal and external factor on coal ash slag viscosity at high temperatures, Part 2: effect of residual carbon on slag viscosity[J]. Fuel, 2015, 158: 976-982. [29] LOLJA S A, HAXHI H, DHIMITRI R, et al. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes[J]. Fuel, 2002, 81(17): 2257-2261. [30] RAMESH B, ESWARI S. Mechanical behaviour of basalt fibre reinforced concrete: an experimental study[J]. Materials Today: Proceedings, 2021, 43: 2317-2322. [31] 林希宁, 张凤林, 周玉梅. 玄武岩纤维及其复合材料的研究进展[J]. 玻璃纤维, 2013(2): 39-44. LIN X N, ZHANG F L, ZHOU Y M. Progress of research on basalt fiber and composites[J]. Fiber Glass, 2013(2): 39-44 (in Chinese). [32] 韩 露. 面向生态车辆的聚乳酸复合材料性能与优化设计方法研究[D]. 长春: 吉林大学, 2020. HAN L. Research on the properties of polylactic acid composites and optimal design for ecological vehicle[D]. Changchun: Jilin University, 2020 (in Chinese). [33] 陈兴芬. 连续玄武岩纤维的高强度化研究[D]. 南京: 东南大学, 2018. CHEN X F. Study on the high strength and performance of continuous basalt fiber[D]. Nanjing: Southeast University, 2018 (in Chinese). [34] XING D, XI X Y, MA P C. Factors governing the tensile strength of basalt fibre[J]. Composites Part A: Applied Science and Manufacturing, 2019, 119: 127-133. [35] VARA PRASAD V, TALUPULA S. A review on reinforcement of basalt and aramid (kevlar 129) fibers[J]. Materials Today: Proceedings, 2018, 5(2): 5993-5998. [36] KHANDELWAL S, RHEE K Y. Recent advances in basalt-fiber-reinforced composites: tailoring the fiber-matrix interface[J]. Composites Part B: Engineering, 2020, 192: 108011. [37] 于利超. 玄武岩纤维表面处理对其复合材料力学性能的影响[D]. 上海: 东华大学, 2015. YU L C. Effect of basalt fiber surface treatment on composite performance[D]. Shanghai: Donghua University, 2015 (in Chinese). [38] CECH V, PRIKRYL R, BALKOVA R, et al. Plasma surface treatment and modification of glass fibers[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(10): 1367-1372. [39] WU M J, JIA L X, LU S L, et al. Interfacial performance of high-performance fiber-reinforced composites improved by cold plasma treatment: a review[J]. Surfaces and Interfaces, 2021, 24: 101077. [40] 周正刚. 高性能有机纤维表面等离子体改性研究[J]. 玻璃钢/复合材料, 2009(1): 77-79+84. ZHOU Z G. Research on plasma surface modification of organic high-performance fiber[J]. Fiber Reinforced Plastics/Composites, 2009(1): 77-79+84 (in Chinese). [41] 李琦娴, 杨建忠, 焦海娟. 玄武岩纤维的低温等离子体表面改性研究[J]. 棉纺织技术, 2020, 48(7): 17-20. LI Q X, YANG J Z, JIAO H J. Study on low temperature plasma surface modification of basalt fiber[J]. Cotton Textile Technology, 2020, 48(7): 17-20 (in Chinese). [42] 靳婷婷, 申士杰, 李 静, 等. 低温等离子处理对玄武岩纤维表面及复合材料性能的影响[J]. 玻璃钢/复合材料, 2015(6): 29-35. JIN T T, SHEN S J, LI J, et al. Impact on the surface of basalt fiber and composite material properties of low-temperature plasma treatment[J]. Fiber Reinforced Plastics/Composites, 2015(6): 29-35 (in Chinese). [43] WANG G J, LIU Y W, GUO Y J, et al. Surface modification and characterizations of basalt fibers with non-thermal plasma[J]. Surface and Coatings Technology, 2007, 201(15): 6565-6568. [44] YU S, OH K H, HONG S H. Enhancement of the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites by improving interfacial bonding strength through plasma-polymerization[J]. Composites Science and Technology, 2019, 182: 107756. [45] LILLI M, JURKO M, SIRJOVOVA V, et al. Basalt fibre surface modification via plasma polymerization of tetravinylsilane/oxygen mixtures for improved interfacial adhesion with unsaturated polyester matrix[J]. Materials Chemistry and Physics, 2021, 274: 125106. [46] LILLI M, ZVONEK M, CECH V, et al. Low temperature plasma polymerization: an effective process to enhance the basalt fibre/matrix interfacial adhesion[J]. Composites Communications, 2021, 27: 100769. [47] 杨 阳. 连续玄武岩纤维表面改性及增强尼龙力学性能研究[D]. 南京: 东南大学, 2019. YANG Y. Surface modification of continuous basalt fiber and study on mechanical properties of reinforced nylon[D]. Nanjing: Southeast University, 2019 (in Chinese). [48] LI Z, XIAO T L, PAN Q Y, et al. Corrosion behaviour and mechanism of basalt fibres in acidic and alkaline environments[J]. Corrosion Science, 2016, 110: 15-22. [49] 李 静, 申士杰, 李伟娜, 等. 酸刻蚀对玄武岩纤维表面偶联剂吸附量及纤维/环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2014, 31(4): 888-894. LI J, SHEN S J, LI W N, et al. Effects of acid modification on coupling agent amount of basalt fiber surface and mechanical property of BF/epoxy composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 888-894 (in Chinese). [50] 李伟娜. 玄武岩纤维表面酸刻蚀处理对其复合材料性能的影响[D]. 北京: 北京林业大学, 2013. LI W N. Effect of acid modification on basalt fiber surface used for composites[D]. Beijing: Beijing Forestry University, 2013 (in Chinese). [51] 邓穆玲, 张 扬, 潘大卫, 等. 碱刻蚀玄武岩纤维对地质聚合物基木材胶黏剂胶接性能的影响[J]. 硅酸盐通报, 2021, 40(6): 2062-2069. DENG M L, ZHANG Y, PAN D W, et al. Effect of basalt fiber by alkali etching on bonding properties of geopolymer-based wood adhesives[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 2062-2069 (in Chinese). [52] 解玉洁, 张晓颖, 吴智仁, 等. 改性玄武岩纤维制备及其在微生物载体的应用[J]. 合成纤维, 2019, 48(3): 19-22. XIE Y J, ZHANG X Y, WU Z R, et al. The preparation of modified basalt fiber and its utilization on microorganism carrier media[J]. Synthetic Fiber in China, 2019, 48(3): 19-22 (in Chinese). [53] NI H C, WANG C C, ARSLAN M, et al. Enhanced wastewater treatment by modified basalt fiber bio-carriers: effect of etching and surface functionalization[J]. Journal of Cleaner Production, 2022, 343: 130927. [54] VARLEY R J, TIAN W, LEONG K H, et al. The effect of surface treatments on the mechanical properties of basalt-reinforced epoxy composites[J]. Polymer Composites, 2013, 34(3): 320-329. [55] CHOI S, MAUL S, STEWART A, et al. Effect of silane coupling agent on the durability of epoxy adhesion for structural strengthening applications[J]. Polymer Engineering & Science, 2013, 53(2): 283-294. [56] XIE Y J, HILL C A S, XIAO Z F, et al. Silane coupling agents used for natural fiber/polymer composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(7): 806-819. [57] 刘亚兰, 申士杰, 李 龙, 等. 偶联剂处理玻璃纤维表面的研究进展[J]. 绝缘材料, 2010, 43(4): 34-39. LIU Y L, SHEN S J, LI L, et al. The research progress on the treatment of glass fiber surface by coupling agent[J]. Insulating Materials, 2010, 43(4): 34-39 (in Chinese). [58] 柳 力, 刘朝晖, 向 宇, 等. 硅烷偶联剂改性玄武岩纤维的机理及其路用性能[J]. 建筑材料学报, 2017, 20(4): 623-629. LIU L, LIU Z H, XIANG Y, et al. Mechanism and road performance of basalt fiber modified by silane coupling agent[J]. Journal of Building Materials, 2017, 20(4): 623-629 (in Chinese). [59] 宋秋霞, 刘华武, 钟智丽, 等. 硅烷偶联剂处理对玄武岩单丝拉伸性能的影响[J]. 天津工业大学学报, 2010, 29(1): 19-22. SONG Q X, LIU H W, ZHONG Z L, et al. Effect of silane coupling agent treatment on tensile properties of single basalt filament[J]. Journal of Tianjin Polytechnic University, 2010, 29(1): 19-22 (in Chinese). [60] JIA H, LIU C, QIAO Y, et al. Enhanced interfacial and mechanical properties of basalt fiber reinforced poly(aryl ether nitrile ketone) composites by amino-silane coupling agents[J]. Polymer, 2021, 230: 124028. [61] ARSLAN C, DOGAN M. The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites[J]. Composites Part B: Engineering, 2018, 146: 145-154. [62] VARELIDIS P C, MCCULLOUGH R L, PAPASPYRIDES C D. The effect on the mechanical properties of carbon/epoxy composites of polyamide coatings on the fibers[J]. Composites Science and Technology, 1999, 59(12): 1813-1823. [63] ZHANG X Y, ZHOU X T, XIE Y J, et al. A sustainable bio-carrier medium for wastewater treatment: modified basalt fiber[J]. Journal of Cleaner Production, 2019, 225: 472-480. [64] PREDA N, COSTAS A, LILLI M, et al. Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106488. [65] HAO B, FÖRSTER T, MÄDER E, et al. Modification of basalt fibre using pyrolytic carbon coating for sensing applications[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 123-128. [66] CAI D L, MA P C. Hydrogel-coated basalt fibre with superhydrophilic and underwater superoleophobic performance for oil-water separation[J]. Composites Communications, 2019, 14: 1-6. [67] WANG Z T, LUO H J, ZHANG J, et al. Water-soluble polysiloxane sizing for improved heat resistance of basalt fiber[J]. Materials Chemistry and Physics, 2021, 272: 125024. [68] WANG Z T, LUO H J, ZHANG L, et al. Mechanical properties of basalt fiber improved by starch phosphates sizing agent[J]. Applied Surface Science, 2020, 521: 146196. [69] ZHENG Y, SUN D, FENG Q, et al. Nano-SiO2 modified basalt fiber for enhancing mechanical properties of oil well cement[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 128900. [70] 别依诺, 朱四荣, 贺 攀, 等. 纳米SiO2-硅烷协同改性对玄武岩纤维/环氧树脂复合材料力学性能及蠕变性能的影响[J]. 复合材料学报, 2022, 39(8): 3723-3732. BIE Y N, ZHU S R, HE P, et al. Effect of nano-SiO2 particles-silane synergistic modification on mechanical properties and creep properties of basalt fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3723-3732 (in Chinese). [71] WEI B, SONG S H, CAO H L. Strengthening of basalt fibers with nano-SiO2-epoxy composite coating[J]. Materials & Design, 2011, 32(8/9): 4180-4186. [72] LIU S Q, WU G H, YU J J, et al. Surface modification of basalt fiber (BF) for improving compatibilities between BF and poly lactic acid (PLA) matrix[J]. Composite Interfaces, 2019, 26(4): 275-290. [73] HUGHES E, DAS S, VAN ENGELEN N, et al. Concrete girders retrofitted with basalt fibre fabric-A feasibility study using lab tests and field application[J]. Engineering Structures, 2021, 238: 112223. [74] GAO F Y, ZHOU X T, MA Y T, et al. Calcium modified basalt fiber bio-carrier for wastewater treatment: investigation on bacterial community and nitrogen removal enhancement of bio-nest[J]. Bioresource Technology, 2021, 335: 125259. [75] 魏 晨, 郭荣辉. 玄武岩纤维的性能及应用[J]. 纺织科学与工程学报, 2019, 36(3): 89-94. WEI C, GUO R H. Properties and application of basalt fiber[J]. Journal of Textile Science and Engineering, 2019, 36(3): 89-94 (in Chinese). [76] ÖZTÜRK B, ARSLAN F, ÖZTÜRK S. Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials[J]. Tribology International, 2007, 40(1): 37-48. [77] 宋 平, 高 欢, 汪 灵, 等. 玄武岩纤维基本特征及应用前景分析[J]. 矿产保护与利用, 2022, 42(4): 173-178. SONG P, GAO H, WANG L, et al. Basic characteristics and application prospect analysis of basalt fiber[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 173-178 (in Chinese). [78] BALAJI K V, KAMYAR S, GURU S R, et al. Surface treatment of basalt fiber for use in automotive composites[J]. Materials Today Chemistry, 2020, 17: 100334. [79] LIU C B, FAN X Q, ZHU M H. Regulating the grinding performance of grindstones via using basalt fibers[J]. Tribology International, 2022, 173: 107611. |
[1] | 王洪镇, 沈昊, 曹万智, 甘季中, 李文琦, 王海瑞, 褚文斌. 硼酸对硫铝酸盐基复合胶凝材料性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1166-1173. |
[2] | 陈娅, 万小梅, 崔允铮, 李辉. 纤维表面改性对EGC力学性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1174-1182. |
[3] | 陈春红, 俞江, 刘荣桂, 王磊, 刘惠, 伍金龙. 干湿循环下再生细骨料混凝土的氯离子渗透性能[J]. 硅酸盐通报, 2023, 42(4): 1217-1225. |
[4] | 丁超, 贾子杰, 王振华, 丁玉贤. 基于生命周期评价的UHPC碳排放控制潜力评估[J]. 硅酸盐通报, 2023, 42(4): 1242-1251. |
[5] | 张虹宇, 郑玉龙, 陆春华. 两种养护制度下C100高强混凝土韧性对比试验研究[J]. 硅酸盐通报, 2023, 42(4): 1252-1259. |
[6] | 张劲竹, 刘华新, 王家贺, 柳根金, 王学志. 混杂纤维混凝土高温后性能劣化分析与强度预测[J]. 硅酸盐通报, 2023, 42(4): 1260-1269. |
[7] | 曹军平, 朱健, 高镇. 基于正交试验的EPS轻型混凝土配合比设计及性能研究[J]. 硅酸盐通报, 2023, 42(4): 1270-1281. |
[8] | 姜晓丹, 孙梦琪, 刘昂, 王攀, 侯东帅. 碳化对环氧树脂与混凝土界面黏结性能影响的分子模拟研究[J]. 硅酸盐通报, 2023, 42(4): 1291-1297. |
[9] | 胡彪, 李先海, 晏祥政, 赵永庆. 热活化煤矸石粉对基体-骨料界面过渡区性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1315-1322. |
[10] | 李相国, 张乘, 吕阳, 李树国, 田博, 张成龙, 柯凯. 陶瓷抛光废料制备UHPC的耐久性能试验研究[J]. 硅酸盐通报, 2023, 42(4): 1418-1427. |
[11] | 杨静泊, 罗欣, 陈远扬, 安红娜, 徐立国, 吴浪. 磷钼杂多酸盐含量对硼硅酸盐玻璃固化体结构和抗浸出性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1448-1457. |
[12] | 高秀梅, 刘曙光, 闫敏. 冻融循环后PVA-ECC拉伸性能衰减规律研究[J]. 硅酸盐通报, 2023, 42(3): 837-844. |
[13] | 张占强, 陈平, 李顺凯, 明阳, 刘荣进, 李航, 赵欢. 氧化镁膨胀剂对UHPC浆体早期孔结构演变的影响[J]. 硅酸盐通报, 2023, 42(3): 871-877. |
[14] | 申文凯, 元强, 纪友红, 曾荣, 李巍, 李富民, 史才军. 搅拌程序对高性能混凝土泵送性能的影响[J]. 硅酸盐通报, 2023, 42(3): 878-887. |
[15] | 葛成龙, 周海龙, 陈岩, 吕志刚. 不同MB值机制砂混凝土的性能和微观孔隙结构[J]. 硅酸盐通报, 2023, 42(3): 888-897. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||