硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (2): 565-574.
所属专题: 资源综合利用
刘景锦1,2, 罗昊鹏1, 雷华阳1,2, 郑刚1,2, 程雪松1,2
收稿日期:
2022-08-04
修订日期:
2022-10-30
出版日期:
2023-02-15
发布日期:
2023-03-07
通信作者:
罗昊鹏,硕士研究生。E-mail:roosevelt2020@163.com
作者简介:
刘景锦(1988—),女,博士,高级工程师。主要从事岩土工程方面的研究。E-mail:liujingjinljj@163.com
基金资助:
LIU Jingjin1,2, LUO Haopeng1, LEI Huayang1,2, ZHENG Gang1,2, CHENG Xuesong1,2
Received:
2022-08-04
Revised:
2022-10-30
Online:
2023-02-15
Published:
2023-03-07
摘要: 软土地基处理是工程界公认的有较高风险的工程领域,传统软土固化中大量使用硅酸盐水泥,不仅消耗自然资源,还会对环境产生不良影响,使用环境友好型碱激发地质聚合物替代传统硅酸盐水泥越来越受到国内外学者的重视。论文基于国内外已有研究成果,从碱激发地质聚合物固化土发展历史、碱激发地质聚合物种类、碱激发地质聚合物反应机理、碱激发地质聚合物固化土力学特性和各类性能等方面进行研究进展的综述分析,重点谈论地质聚合物处理软土的力学特性,并对不同碱激发地质聚合物在软土地基加固中抗渗性能、抗冻融性能、抗腐蚀性能等进行分析,对碱激发地质聚合物在软土地基加固中的应用进行系统梳理和展望,以期引导和提升碱激发地质聚合物在软土地基加固中的应用,实现我国地基加固可持续发展。
中图分类号:
刘景锦, 罗昊鹏, 雷华阳, 郑刚, 程雪松. 碱激发地质聚合物固化软土的研究进展[J]. 硅酸盐通报, 2023, 42(2): 565-574.
LIU Jingjin, LUO Haopeng, LEI Huayang, ZHENG Gang, CHENG Xuesong. Research Progress on Application of Alkali-Activated Geopolymers to Stabilize Soft Soil[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 565-574.
[1] 中华人民共和国住房和城乡建设部. 软土地区岩土工程勘察规程: JGJ 83—2011[S]. 北京: 中国建筑工业出版社, 2011. The Ministry of Housing and Urban-Rural Development, PRC. Code for geotechnical engineering investigation in soft soil area: JGJ 83—2011[S]. Beijing: China Architecture and Building Press, 2011 (in Chinese). [2] 郑 刚, 龚晓南, 谢永利, 等. 地基处理技术发展综述[J]. 土木工程学报, 2012, 45(2): 127-146. ZHENG G, GONG X N, XIE Y L, et al. State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146 (in Chinese). [3] 龚晓南. 地基处理技术及其发展[J]. 土木工程学报, 1997, 30(6): 3-11. GONG X N. Ground treatment technology and its development[J]. China Civil Engineering Journal, 1997, 30(6): 3-11 (in Chinese). [4] 沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报, 1998, 20(1): 100-111. SHEN Z J. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 100-111 (in Chinese). [5] 郑文忠, 朱 晶. 碱矿渣胶凝材料结构工程应用基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015: 1-53. ZHENG W Z, ZHU J. Basic structural engineering application of alkali slag cementitious materials[M]. Harbin: Harbin Institute of Technology Press, 2015: 1-53 (in Chinese). [6] 罗 冬. 碱激发粉煤灰-矿渣复合胶凝材料抗压强度及反应水平研究[D]. 长沙: 长沙理工大学, 2021. LUO D. Study on the compressive strength and reaction level of alkali-activated fly ash-GGBFS blend[D]. Changsha: Changsha University of Science & Technology, 2021 (in Chinese). [7] 汪先三. 我国高岭土开发利用现状及应用前景[J]. 中国非金属矿工业导刊, 2016(2): 8-9+19. WANG X S. Exploitation and application prospects of kaolin in China[J]. China Non-Metallic Minerals Industry, 2016(2): 8-9+19 (in Chinese). [8] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44: 299-327. [9] PROVIS J L, JANNIE S J. Alkali activated materials[M]. Springer Nature B. V. , 2014. [10] ROY D, LANGTON C. Studies of ancient concrete as analogs of cementitious sealing materials for a repository in tuff[R]. Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 1989. [11] SIVAPULLAIAH P V, PRASHANTH J P, SRIDHARAN A, et al. Technical note reactive silica and strength of fly ashes[J]. Geotechnical & Geological Engineering, 1998, 16(3): 239-250. [12] SHIRAZI H. Field and laboratory evaluation of the use of lime fly ash to replace soil cement as a base course[J]. Transportation Research Record: Journal of the Transportation Research Board, 1999, 1652(1): 270-275. [13] MILLER G A, ZAMAN M. Field and laboratory evaluation of cement kiln dust as a soil stabilizer[J]. Transportation Research Record: Journal of the Transportation Research Board, 2000, 1714(1): 25-32. [14] NALBANTOGLU Z, GUCBILMEZ E. Improvement of calcareous expansive soils in semi-arid environments[J]. Journal of Arid Environments, 2001, 47(4): 453-463. [15] KAMON M, GU H D, MASAHIRO I. Improvement of mechanical properties of ferrum lime stabilized soil with the addition of aluminum sludge[J]. Journal of the Society of Materials Science, Japan, 2001, 50(3): 47-53. [16] 张 明. 水泥加固土工程性质的试验研究与分析[D]. 太原: 太原理工大学, 2001. ZHANG M. Experimental study and analysis of engineering properties of cement reinforced soil[D]. Taiyuan: Taiyuan University of Technology, 2001 (in Chinese). [17] 孙家瑛, 王志新, 戴亚英, 等. 地聚合物灌浆材料在公路软土地基处理中的应用[J]. 铁道科学与工程学报, 2005, 2(2): 62-65. SUN J Y, WANG Z X, DAI Y Y, et al. The application of geopolymer grouting material in the treatment of road soft soil[J]. Journal of Railway Science and Engineering, 2005, 2(2): 62-65 (in Chinese). [18] 王振军, 翁优灵, 杜少文. 矿渣粉加固粉土的理论分析及路用性能研究[J]. 工程地质学报, 2006, 14(5): 709-714. WANG Z J, WENG Y L, DU S W. Theoretical analysis and field performance of silt soil reinforced with slag powder[J]. Journal of Engineering Geology, 2006, 14(5): 709-714 (in Chinese). [19] 张大捷, 田晓峰, 侯浩波, 等. 矿渣胶凝材料固化软土的力学性状及机制[J]. 岩土力学, 2007, 28(9): 1987-1991. ZHANG D J, TIAN X F, HOU H B, et al. Mechanical behavior and mechanism of stabilizing soft soil by slag cementitious material[J]. Rock and Soil Mechanics, 2007, 28(9): 1987-1991 (in Chinese). [20] 宁建国, 黄 新. 利用工业废渣配制水泥系软土固化剂探讨[J]. 工业建筑, 2005, 35(s1): 432-437+536. NING J G, HUANG X. Exploration of preparing cement-based stabilizing agent for soft soil by industrial cinders[J]. Industrial Construction, 2005, 35(s1): 432-437+536 (in Chinese). [21] ZHANG M, GUO H, EL-KORCHI T, et al. Experimental feasibility study of geopolymer as the next-generation soil stabilizer[J]. Construction and Building Materials, 2013, 47: 1468-1478. [22] 郑文忠, 邹梦娜, 王 英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1): 28-39. ZHENG W Z, ZOU M N, WANG Y. Research progress of alkali-activated cementitious materials[J]. Journal of Building Structures, 2019, 40(1): 28-39 (in Chinese). [23] 王海荣. 地聚合物固化铅镉污染土的效果研究[D]. 南京: 东南大学, 2021. WANG H R. Study on solidification effect of geopolymer on lead and cadmium contaminated soil[D]. Nanjing: Southeast University, 2021 (in Chinese). [24] 马 骁. 基于无机聚合物水泥的新型高性能轻骨料混凝土的制备与性能研究[D]. 长沙: 中南大学, 2012. MA X. Research on preparation and performance of new type high performance lightweight aggregate concrete based on inorganic polymer cement[D]. Changsha: Central South University, 2012 (in Chinese). [25] GRANIZO M L, ALONSO S, BLANCO-VARELA M T, et al. Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction[J]. Journal of the American Ceramic Society, 2004, 85(1): 225-231. [26] LECOMTE I, LIÉGEOIS M, RULMONT A, et al. Synthesis and characterization of new inorganic polymeric composites based on Kaolin or white clay and on ground-granulated blast furnace slag[J]. Journal of Materials Research, 2003, 18(11): 2571-2579. [27] BARBOSA V F F, MACKENZIE K J D, THAUMATURGO C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers[J]. International Journal of Inorganic Materials, 2000, 2(4): 309-317. [28] PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329. [29] VAN JAARSVELD J G S, VAN DEVENTER J S J, LUKEY G C. The characterisation of source materials in fly ash-based geopolymers[J]. Materials Letters, 2003, 57(7): 1272-1280. [30] 刘春原, 赵献辉, 朱 楠, 等. 粉煤灰基地质聚合物力学性能及碱渣改性机理[J]. 硅酸盐通报, 2017, 36(2): 679-685+691. LIU C Y, ZHAO X H, ZHU N, et al. Mechanical properties of fly ash-based geopolymers and modification mechanism of soda residue[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(2): 679-685+691 (in Chinese). [31] AMER I, KOHAIL M, EL-FEKY M S, et al. A review on alkali-activated slag concrete[J]. Ain Shams Engineering Journal, 2021, 12(2): 1475-1499. [32] WANG S D. Alkaline activation of slag[J]. Immunology, 1995, 122(3): 306-315. [33] PUERTAS F, FERNÁNDEZ-JIMÉNEZ A, BLANCO-VARELA M T. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate[J]. Cement and Concrete Research, 2004, 34(1): 139-148. [34] YAO J L, QIU H J, HE H, et al. Application of a soft soil stabilized by composite geopolymer[J]. Journal of Performance of Constructed Facilities, 2021, 35(4): 04021018. [35] PARTHIBAN D, VIJAYAN D S, KODA E, et al. Role of industrial based precursors in the stabilization of weak soils with geopolymer: a review[J]. Case Studies in Construction Materials, 2022, 16: e00886. [36] 王东星, 王宏伟, 邹维列, 等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38(s1): 3197-3205. WANG D X, WANG H W, ZOU W L, et al. Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(s1): 3197-3205 (in Chinese). [37] CRISTELO N, GLENDINNING S, TEIXEIRA PINTO A. Deep soft soil improvement by alkaline activation[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2011, 164(2): 73-82. [38] CRISTELO N, GLENDINNING S, MIRANDA T, et al. Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction[J]. Construction and Building Materials, 2012, 36: 727-735. [39] CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation[J]. Acta Geotechnica, 2013, 8(4): 395-405. [40] YI Y L, LI C, LIU S Y. Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay[J]. Journal of Materials in Civil Engineering, 2015, 27(4): 04014146. [41] SARGENT P, HUGHES P N, ROUAINIA M. A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing[J]. Soils and Foundations, 2016, 56(6): 1021-1034. [42] 吴燕开, 胡晓士, 胡 锐, 等. 烧碱激发钢渣粉在淤泥质土中的试验研究[J]. 岩土工程学报, 2017, 39(12): 2187-2194. WU Y K, HU X S, HU R, et al. Experimental study on caustic soda-activated steel slag powder in muddy soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2187-2194 (in Chinese). [43] 林天干, 何 华, 许东风, 等. 地聚合物加固软土力学性能及微观试验研究[J]. 长江科学院院报, 2018, 35(10): 104-108. LIN T G, HE H, XU D F, et al. Mechanical properties and microscopic experimental study of geopolymer reinforced soft soil[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(10): 104-108 (in Chinese). [44] 吴 俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655 (in Chinese). [45] PHETCHUAY C, HORPIBULSUK S, ARULRAJAH A, et al. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer[J]. Applied Clay Science, 2016, 127/128: 134-142. [46] 孙秀丽, 王淑婷, 姚 君, 等. 碱激发粉煤灰和矿粉固化淤泥的胶结体孔隙分布特征[J]. 重庆大学学报, 2018, 41(6): 58-65. SUN X L, WANG S T, YAO J, et al. Pore distribution characteristics of dredged sludge cementation body solidified with fly ash and mineral power under alkali stimulated conditions[J]. Journal of Chongqing University, 2018, 41(6): 58-65 (in Chinese). [47] 俞家人, 陈永辉, 陈 庚, 等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报, 2020, 23(2): 364-371. YU J R, CHEN Y H, CHEN G, et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism[J]. Journal of Building Materials, 2020, 23(2): 364-371 (in Chinese). [48] CHOWDARY B, RAMANAMURTY V, PILLAI R J. Fiber reinforced geopolymer treated soft clay-an innovative and sustainable alternative for soil stabilization[J]. Materials Today: Proceedings, 2020, 32: 777-781. [49] YI Y, LISKA M, AL-TABBAA, et al. Initial investigation into the use of GGBS-MgO in soil stabilisation[C]//Proceedings of the Fourth International Conference on Grouting and Deep Mixing, 2012: 444-453. [50] 庞文台. 掺合粉煤灰的复合水泥土力学性能及耐久性试验研究[D]. 呼和浩特: 内蒙古农业大学, 2013. PANG W T. Blenging fly ash compound cement soil mechanical properties and durability research[D]. Hohhot: Inner Mongolia Agricultural University, 2013 (in Chinese). [51] WALKLEY B, SAN NICOLAS R, SANI M A, et al. Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors[J]. Cement and Concrete Research, 2016, 89: 120-135. [52] 杨永亮, 王鹏云, 王林浩, 等. 偏高岭土对水泥砂土渗透性的影响研究[J]. 中外公路, 2018, 38(6): 232-234. YANG Y L, WANG P Y, WANG L H, et al. Influence of metakaolin on permeability of cement sand[J]. Journal of China & Foreign Highway, 2018, 38(6): 232-234 (in Chinese). [53] 崔靖俞, 解邦龙, 季港澳, 等. 粉煤灰水泥土渗透性能的试验研究[J]. 科学技术与工程, 2019, 19(34): 323-329. CUI J Y, XIE B L, JI G A, et al. Experimental study on the permeability of fly ash soil-cement[J]. Science Technology and Engineering, 2019, 19(34): 323-329 (in Chinese). [54] ABDULLAH H H, SHAHIN M A, SARKER P. Use of fly-ash geopolymer incorporating ground granulated slag for stabilisation of Kaolin clay cured at ambient temperature[J]. Geotechnical and Geological Engineering, 2019, 37(2): 721-740. [55] 晏祥智, 刘国君, 李云瑞, 等. 工业废渣地聚合物固化/稳定铅镉污染土的强度和浸出特性[C]//《环境工程》2019全国学术年会论文集(下册), 2019: 706-711. YAN X Z, LIU G J, LI Y R, et al. Strength and leaching characteristics of lead and cadmium polluted soils solidified/stabilized by industrial waste geopolymers[C]//Environmental Engineering, 2019 National Annual Conference Proceeding (Volume 2), 2019: 706-711 (in Chinese). [56] 吴燕开, 苗盛瑶, 李 鑫, 等. 冻融循环下钢渣粉水泥改良膨胀土室内试验研究[J]. 工程地质学报, 2021, 29(3): 851-861. WU Y K, MIAO S Y, LI X, et al. Experimental study on physical and mechanical properties of expansive soil improved by steel slag powder cement under freeze-thaw cycle[J]. Journal of Engineering Geology, 2021, 29(3): 851-861 (in Chinese). [57] 陈 锐, 郝若愚, 李 笛, 等. 碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究[J]. 工程地质学报, 2022, 30(2): 327-337. CHEN R, HAO R Y, LI D, et al. Study on road performance and freeze-thaw resistance of alkali activated material stabilized low-liquid-limit silty clay[J]. Journal of Engineering Geology, 2022, 30(2): 327-337 (in Chinese). [58] XING H F, XIONG F, ZHOU F. Improvement for the strength of salt-rich soft soil reinforced by cement[J]. Marine Georesources & Geotechnology, 2018, 36(1): 38-42. [59] 刘 旭, 张 默, 邵龙潭. 地质聚合物加固含硫软土的试验研究[J]. 水利与建筑工程学报, 2018, 16(4): 136-142. LIU X, ZHANG M, SHAO L T. Experimental study on sulfate rich-soil stabilization with geopolymer[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(4): 136-142 (in Chinese). [60] 田 亮, 姚 晓, 董 洁, 等. 矿渣碱激发胶凝材料固化盐渍土试验研究[J]. 混凝土与水泥制品, 2018(9): 98-101. TIAN L, YAO X, DONG J, et al. Experimental study on solidification of saline soil using alkali-activated slag materials[J]. China Concrete and Cement Products, 2018(9): 98-101 (in Chinese). [61] 吕擎峰, 王子帅, 何俊峰, 等. 碱激发地聚物固化盐渍土微观结构研究[J]. 长江科学院院报, 2020, 37(1): 79-83. LV Q F, WANG Z S, HE J F, et al. Study on microstructure of saline soils solidified by alkali-activated geopolymers[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(1): 79-83 (in Chinese). [62] 王 亮, 慈 军, 杨志豪, 等. 电石渣-火山灰质胶凝材料固化盐渍土试验研究[J]. 新型建筑材料, 2020, 47(5): 46-49+67. WANG L, CI J, YANG Z H, et al. Experimental study on solidified saline soil with calcium carbide slag and volcanic ash cementitious materials[J]. New Building Materials, 2020, 47(5): 46-49+67 (in Chinese). [63] KHADKA S D, JAYAWICKRAMA P W, SENADHEERA S, et al. Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum[J]. Transportation Geotechnics, 2020, 23: 100327. [64] 秦 志. 碱激发剂固化铜污染土的力学特性研究[J]. 公路交通科技(应用技术版), 2017, 13(9): 101-103. QIN Z. Study on mechanical properties of copper contaminated soil solidified by alkali activator[J]. Highway Traffic Technology (Applied Technology Edition), 2017, 13(9): 101-103 (in Chinese). [65] 陈永贵, 朱申怡, 谭邦宏, 等. 电石渣/偏高岭土固化铜污染土淋滤特性试验[J]. 同济大学学报(自然科学版), 2018, 46(2): 182-187. CHEN Y G, ZHU S Y, TAN B H, et al. Leaching characteristic of solidification/stabilization for Cu2+ contaminated soils with carbide slag and metakaolin[J]. Journal of Tongji University (Natural Science), 2018, 46(2): 182-187 (in Chinese). [66] LI Y Y, ZHANG T T, JIA S B, et al. Mechanical properties and leaching characteristics of geopolymer-solidified/stabilized lead-contaminated soil[J]. Advances in Civil Engineering, 2019: 1-8. [67] COLLINS F, SANJAYAN J G. Microcracking and strength development of alkali activated slag concrete[J]. Cement and Concrete Composites, 2001, 23(4/5): 345-352. |
[1] | 范小春, 汪阳, 高旭, 张宇, 袁波. 亚硝酸钙与富铝矿相协同调控碱矿渣氯离子固化能力研究[J]. 硅酸盐通报, 2023, 42(4): 1148-1155. |
[2] | 陈娅, 万小梅, 崔允铮, 李辉. 纤维表面改性对EGC力学性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1174-1182. |
[3] | 安赛, 王宝民, 陈文秀, 赵庆新. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. |
[4] | 张先伟, 高永红, 王平, 李江山, 刘世宇, 郎雷, 雷学文. 电解锰渣-生活垃圾焚烧底渣协同制备路面基层材料试验研究[J]. 硅酸盐通报, 2023, 42(4): 1363-1373. |
[5] | 李相国, 张乘, 吕阳, 李树国, 田博, 张成龙, 柯凯. 陶瓷抛光废料制备UHPC的耐久性能试验研究[J]. 硅酸盐通报, 2023, 42(4): 1418-1427. |
[6] | 杜晓伟, 刘辉, 李文举, 曹楷. 掺加热活化油页岩半焦混凝土的耐久性[J]. 硅酸盐通报, 2023, 42(4): 1428-1436. |
[7] | 李秋, 朱翔, 耿海宁, 李宗刚, 马浩森, 陈伟. 地聚合物基多相陶瓷高放废液固化体固化机理与浸出性能[J]. 硅酸盐通报, 2023, 42(4): 1437-1447. |
[8] | 葛津宇, 韦华, 徐菲, 韩雪松, 朱鹏飞, 肖怀前, 李怀森. CSH-蒙脱石界面能对水泥固化蒙脱土抗压强度的影响[J]. 硅酸盐通报, 2023, 42(3): 827-836. |
[9] | 王雪芳, 曾天鑫, 周豪杰. 碱激发剂对单组份碱激发镍渣水泥混凝土抗碳化性能的影响[J]. 硅酸盐通报, 2023, 42(3): 1008-1015. |
[10] | 沈鑫, 郭随华, 李文伟, 陆超, 张坤悦, 王敏, 文寨军. 低热硅酸盐水泥水化及性能研究现状[J]. 硅酸盐通报, 2023, 42(2): 383-392. |
[11] | 姚志鑫, 穆川川, 单俊鸿, 刘捷, 王奎, 高鹏. 基于裹浆工艺的煤矸石混凝土性能研究[J]. 硅酸盐通报, 2023, 42(2): 587-597. |
[12] | 缪新宇, 陆萍, 刘双宇, 李尹豪, 张福隆, 李亮, 张浩立. 光固化氧化铝陶瓷浆料流变性能研究进展[J]. 硅酸盐通报, 2023, 42(2): 708-718. |
[13] | 李珊, 张宇贝, 刘兵山, 王功, 段文艳, 胡传奇, 李媛. 面向光固化3D打印陶瓷构件的光敏树脂体系研究[J]. 硅酸盐通报, 2023, 42(2): 719-727. |
[14] | 冯春花, 陈钰, 黄益宏, 郭晖, 朱建平. 煤矸石骨料及其改性技术研究进展[J]. 硅酸盐通报, 2023, 42(1): 133-143. |
[15] | 陈波, 王伟鱼, 丰雨秋, 饶美娟. 蒸养条件下矿粉、粉煤灰对高铁相硅酸盐水泥基材料毛细孔和抗侵蚀性能的影响[J]. 硅酸盐通报, 2023, 42(1): 162-169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||