硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (11): 4092-4112.
所属专题: 陶瓷
孙敬伟1, 王洪磊1,2, 周新贵1
收稿日期:
2023-06-02
修订日期:
2023-08-03
出版日期:
2023-11-15
发布日期:
2023-11-22
通信作者:
王洪磊,博士,副教授。E-mail:honglei.wang@163.com
作者简介:
孙敬伟(2000—),男,硕士研究生。主要从事陶瓷基复合材料方面的研究。E-mail:sunjingwei0120@163.com
基金资助:
SUN Jingwei1, WANG Honglei1,2, ZHOU Xingui1
Received:
2023-06-02
Revised:
2023-08-03
Online:
2023-11-15
Published:
2023-11-22
摘要: 与传统金属材料相比,氧化铝纤维增强氧化铝基(Al2O3/Al2O3)复合材料因具有比强度高、密度低、耐高温和抗氧化等特点,已经成为新一代备受国内外学者关注的航空航天热结构复合材料。本文介绍了目前常用的氧化铝纤维及其基本性能,总结了Al2O3/Al2O3复合材料中常用的界面相及其对复合材料性能的影响规律,归纳了Al2O3/Al2O3复合材料的制备工艺及性能,指出了该材料未来的发展趋势,旨在为国内Al2O3/Al2O3复合材料的研究提供借鉴和参考,促进Al2O3/Al2O3复合材料在航空航天领域热端高温部件上的广泛应用。
中图分类号:
孙敬伟, 王洪磊, 周新贵. 氧化铝纤维增强氧化铝基复合材料研究进展[J]. 硅酸盐通报, 2023, 42(11): 4092-4112.
SUN Jingwei, WANG Honglei, ZHOU Xingui. Research Progress of Al2O3 Fiber Reinforced Al2O3 Matrix Composites[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(11): 4092-4112.
[1] ARAI Y, INOUE R, GOTO K, et al. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: a review[J]. Ceramics International, 2019, 45(12): 14481-14489. [2] BINNER J, PORTER M, BAKER B, et al. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs-a review[J]. International Materials Reviews, 2020, 65(7): 389-444. [3] DONG Y, REN K, LU Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites[J]. Journal of the European Ceramic Society, 2019, 39(7): 2574-2579. [4] KUPSCH A, LAQUAI R, MÜLLER B R, et al. Evolution of damage in all-oxide ceramic matrix composite after cyclic loading[J]. Advanced Engineering Materials, 2022, 24(6): 2100763. [5] LI L B. Thermomechanical fatigue of ceramic-matrix composites[M]. New York: John Wiley & Sons, 2019. [6] LI L B. Durability of ceramic-matrix composites[M]. Sawston: Woodhead Publishing, 2020 [7] SCITI D, ZOLI L, REIMER T, et al. A systematic approach for horizontal and vertical scale up of sintered ultra-high temperature ceramic matrix composites for aerospace-advances and perspectives[J]. Composites Part B: Engineering, 2022, 234: 109709. [8] WANG W Q, ZHANG L, DONG X J, et al. Additive manufacturing of fiber reinforced ceramic matrix composites: advances, challenges, and prospects[J]. Ceramics International, 2022, 48(14): 19542-19556. [9] WANG X L, GAO X D, ZHANG Z H, et al. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review[J]. Journal of the European Ceramic Society, 2021, 41(9): 4671-4688. [10] 王洪磊. 反应浸渗制备连续纤维增强SiC基复合材料及其性能研究[D]. 长沙: 国防科学技术大学, 2012: 5-20. WANG H L. Preparation and properties of continuous fiber reinforced SiC matrix composites by reactive infiltration[D]. Changsha: National University of Defense Technology, 2012: 5-20 (in Chinese). [11] LI H, YANG F C, ZHANG B X, et al. Preparation and characterization of Nextel 720/alumina ceramic matrix composites via an improved prepreg process[J]. International Journal of Applied Ceramic Technology, 2022, 19(4): 1970-1980. [12] PANAKARAJUPALLY R P, MIRZA F, EL RASSI J, et al. Erosion characteristics of N720/alumina oxide/oxide ceramic matrix composites in a combustion environment[J]. Journal of the European Ceramic Society, 2022, 42(8): 3530-3541. [13] AN Q L, CHEN J, MING W W, et al. Machining of SiC ceramic matrix composites: a review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 540-567. [14] 杨 博, 余金山, 顾全超, 等. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056 YANG B, YU J S, GU Q C, et al. Research progress on preparation of SiCf/SiC composite[J]. Materials Review, 2021, 35(3): 3050-3056 (in Chinese). [15] ASYRAF M R M, ILYAS R A, SAPUAN S M, et al. Advanced composite in aerospace applications: opportunities, challenges, and future perspective[M]//MAZLAN N, SAPUAN S, ILYAS R. Advanced Composites in Aerospace Engineering Applications. Cham: Springer, 2022: 471-498. [16] MCILHAGGER A, ARCHER E, MCILHAGGER R. Manufacturing processes for composite materials and components for aerospace applications[M]//Polymer Composites in the Aerospace Industry. Amsterdam: Elsevier, 2020: 59-81. [17] RAMACHANDRAN K, LEELAVINODHAN S, ANTAO C, et al. Analysis of failure mechanisms of oxide-oxide ceramic matrix composites[J]. Journal of the European Ceramic Society, 2022, 42(4): 1626-1634. [18] MUHAMMAD A, RAHMAN M R, BAINI R, et al. Applications of sustainable polymer composites in automobile and aerospace industry[M]//Advances in Sustainable Polymer Composites. Amsterdam: Elsevier, 2021: 185-207. [19] 沈自才, 欧阳晓平, 高 鸿. 我国深空探测对航天材料及工艺的需求[J]. 宇航材料工艺, 2021, 51(5): 1-14. SHEN Z C, OUYANG X P, GAO H. Demand for aerospace materials and technology for China's deep space exploration[J]. Aerospace Materials & Technology, 2021, 51(5): 1-14 (in Chinese). [20] 赵云峰, 潘玲英. 航天先进结构复合材料及制造技术研究进展[J]. 宇航材料工艺, 2021, 51(4): 29-36. ZHAO Y F, PAN L Y. Research progress of aerospace advanced polymer matrix composites and manufacturing technology[J]. Aerospace Materials & Technology, 2021, 51(4): 29-36 (in Chinese). [21] 周亦人, 沈自才, 齐振一, 等. 中国航天科技发展对高性能材料的需求[J]. 材料工程, 2021, 49(11): 41-50. ZHOU Y R, SHEN Z C, QI Z Y, et al. Demand for high performance materials in development of China's aerospace science and technology[J]. Journal of Materials Engineering, 2021, 49(11): 41-50 (in Chinese). [22] BANSAL N P, LAMON J. Ceramic matrix composites: materials, modeling and technology[M]. New York: John Wiley & Sons, 2014. [23] BEHRENDT T, HACKEMANN S, MECHNICH P, et al. Development and test of oxide/oxide CMC combustor liner demonstrators for aero engines[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, June 13-17, 2016, Seoul, South Korea. 2016. [24] GERENDA'S M, CADORET Y, WILHELMI C, et al. Improvement of oxide/oxide CMC and development of combustor and turbine components in the HiPOC program[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, June 6-10, 2011, Vancouver, British Columbia, Canada. 2012: 477-490. [25] KISER J D, BANSAL N P, SZELAGOWSKI J, et al. Oxide/oxide ceramic matrix composite (CMC) exhaust mixer development in the NASA environmentally responsible aviation (ERA) project[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2015, 56758: V006T02A002. [26] GERENDÁS M, WILHELMI C, MACHRY T, et al. Development and validation of oxide/oxide CMC combustors within the HiPOC program[C]//Volume 4: Ceramics; Concentrating Solar Power Plants; Controls, Diagnostics and Instrumentation; Education; Electric Power; Fans and Blowers. June 3-7, 2013. San Antonio, Texas, USA. American Society of Mechanical Engineers, 2013: 55188: V004T02A003. [27] BEHRENDT T, HACKEMANN S, MECHNICH P, et al. Development and test of oxide/oxide ceramic matrix composites combustor liner demonstrators for aero-engines[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(3): 031507. [28] PRITZKOW W E C. “keramikblech” properties and applications[M]//High Temperature Ceramic Matrix Composites. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006: 681-685. [29] RUDINGER A, PRITZKOW W. Die entwicklung oxidkeramischer faserverbundwerkstoffe am Fraunhofer ISC/zentrum HTL in zusammenarbeit mit W.E.C. pritzkow spezialkeramik[J]. Keramische Zeitschrift, 2013, 65(3): 166-169. [30] 贾玉娜, 曹 旭, 焦秀玲, 等. 无机酸铝体系氧化铝连续纤维的制备技术研究[J/OL].无机材料学报, 1-10 [2023-07-20]. http://kns.cnki.net.libyc.nudt.edu.cn:80/kcms/detail/31.1363. JIA Y N, CAO X, JIAO X L, et al. Preparation of alumina ceramic continuous fibers with inorganic acidic aluminum sol as precursor[J/OL].Journal of Inorganic Materials, 1-10 [2023-07-20]. http://kns.cnki.net.libyc.nudt.edu.cn:80/kcms/detail/31.1363 (in Chinese). [31] 郑 周. 氧化铝纤维增强陶瓷基复合材料的制备及力学性能研究[D]. 长沙: 国防科技大学, 2021: 2-14. ZHENG Z. Preparation and mechanical properties of alumina fiber reinforced ceramic matrix composites[D]. Changsha: National University of Defense Technology, 2021: 2-14 (in Chinese). [32] LIU H T, CHEN X F, JIANG R, et al. Microstructure and mechanical properties of three-dimensional oxide/oxide composite fabricated by a slurry infiltration and sintering process[J]. Journal of the European Ceramic Society, 2023, 43(2): 493-500. [33] RASHID T, GORGA R, KRAUSE W. Mechanical properties of electrospun fibers: a critical review[J]. Advanced Engineering Materials, 2021, 23(9): 2100153. [34] HAY R S, ARMANI C J, RUGGLES-WRENN M B, et al. Creep mechanisms and microstructure evolution of NextelTM 610 fiber in air and steam[J]. Journal of the European Ceramic Society, 2014, 34(10): 2413-2426. [35] 姜 如. 连续氧化铝纤维增强氧化铝基复合材料的制备与性能研究[D]. 长沙: 国防科技大学, 2019: 4-6. JIANG R. Preparation and properties of continuous alumina fiber reinforced alumina matrix composites[D]. Changsha: National University of Defense Technology, 2019: 4-6 (in Chinese). [36] SCHMÜCKER M, FLUCHT F, MECHNICH P. Degradation of oxide fibers by thermal overload and environmental effects[J]. Materials Science and Engineering: A, 2012, 557: 10-16. [37] KINGERY W D, BOWEN H K, UHLMANN D R. Introduction to ceramics[M]. 2d ed. New York: Wiley, 1976. [38] 3M Science. 3MTMNextelTM ceramic fibers and textiles: Technical reference guide[EB/OL]. [2021-11-05].http://www.3m.com/3M/en_US/p/c/advanced-materials/ceramics/fibers. [39] ARMANI C J, RUGGLES-WRENN M B, FAIR G E, et al. Creep of NextelTM 610 fiber at 1 100 ℃ in air and in steam[J]. International Journal of Applied Ceramic Technology, 2013, 10(2): 276-284. [40] ARMANI C J, RUGGLES-WRENN M B, HAY R S, et al. Creep and microstructure of NextelTM 720 fiber at elevated temperature in air and in steam[J]. Acta Materialia, 2013, 61(16): 6114-6124. [41] JIAN Y J, WANG Y F, LIU R J, et al. Property evolutions of Si/mixed Yb2Si2O7 and Yb2SiO5 environmental barrier coatings completely wrapping up SiCf/SiC composites under 1 300 ℃ water vapor corrosion[J]. Ceramics International, 2021, 47(16): 22373-22381. [42] LI T, ZHANG Y L, FU Y Q, et al. High strength retention and improved oxidation resistance of C/C composites by utilizing a layered SiC ceramic coating[J]. Ceramics International, 2021, 47(10): 13500-13509. [43] ZHU X F, ZHANG Y L, SU Y Y, et al. SiC-Si coating with micro-pores to protect carbon/carbon composites against oxidation[J]. Journal of the European Ceramic Society, 2021, 41(1): 114-120. [44] DEVASIA R, PAINULY A, DEVAPAL D, et al. Continuous fiber reinforced ceramic matrix composites[M]//Fiber Reinforced Composites. Amsterdam: Elsevier, 2021: 669-751. [45] ARULVEL S, MALLIKARJUNA R D, DSILVA W R D, et al. A comprehensive review on mechanical and surface characteristics of composites reinforced with coated fibres[J]. Surfaces and Interfaces, 2021, 27: 101449. [46] WANG Y, LIU H T, CHENG H F, et al. Interface engineering of fiber-reinforced all-oxide composites fabricated by the sol-gel method with fugitive pyrolytic carbon coatings[J]. Composites Part B: Engineering, 2015, 75: 86-94. [47] GENG G R, ZHOU C L, ZHOU Y Y, et al. Fabrication and properties of 3D mullite fiber-reinforced Al2O3 matrix composites prepared by sol-gel process[J]. IOP Conference Series: Materials Science and Engineering, 2019, 678(1): 012032. [48] WANG Y, ZHANG A, LI G D, et al. Sintering temperature and interphase effects on mechanical properties of an oxide fiber-reinforced Al2O3-SiO2 composite fabricated by sol-gel method[J].Applied Composite Materials, 2021, 28(2): 321-339. [49] SUN N J, WANG C, JIAO L Y, et al. Controllable coating of boron nitride on ceramic fibers by CVD at low temperature[J]. Ceramics International, 2017, 43(1): 1509-1516. [50] ZHANG C L, FEI J M, GUO L, et al. Thermal cycling and hot corrosion behavior of a novel LaPO4/YSZ double-ceramic-layer thermal barrier coating[J]. Ceramics International, 2018, 44(8): 8818-8826. [51] XU Z K, ZHANG J, CHEN Z, et al. LaPO4 coating on alumina-based fiber: strength retention of fiber and improvement of interfacial performances[J]. Ceramics International, 2022, 48(6): 7836-7849. [52] LIU H T, CHENG H F, WANG J, et al. Microstructural investigations of the pyrocarbon interphase in SiC fiber-reinforced SiC matrix composites[J]. Materials Letters, 2009, 63(23): 2029-2031. [53] CHAWLA K K, XU Z R, HA S J, et al. Effect of BN coating on the strength of a mullite type fiber[J]. Applied Composite Materials, 1997, 4(5): 263-272. [54] TAO X, GUO L L, ZHANG J F, et al. Preparation of La-monazite fiber coating on quartz fiber fabric by a repeated dip-sintering method[J]. Materials Chemistry and Physics, 2022, 279: 125753. [55] BOAKYE E E, MOGILEVSKY P. Fiber strength retention of lanthanum- and cerium monazite-coated nextelTM 720[J]. Journal of the American Ceramic Society, 2004, 87(2): 314-316. [56] FAIR G E, HAY R S, BOAKYE E E. Precipitation coating of rare-earth orthophosphates on woven ceramic fibers-effect of rare-earth cation on coating morphology and coated fiber strength[J]. Journal of the American Ceramic Society, 2008, 91(7): 2117-2123. [57] KELLER K A, MAH T I, PARTHASARATHY T A, et al. Effectiveness of monazite coatings in oxide/oxide composites after long-term exposure at high temperature[J]. Journal of the American Ceramic Society, 2003, 86(2): 325-332. [58] 向 阳, 王 义, 朱程鑫, 等. 氧化物/氧化物陶瓷基复合材料研究进展[J]. 现代技术陶瓷, 2020, 41(6): 394-404. XIANG Y, WANG Y, ZHU C X, et al. Research progress of oxide/oxide ceramic matrix composites[J]. Advanced Ceramics, 2020, 41(6): 394-404 (in Chinese). [59] 梁艳媛, 邱海鹏, 马 新, 等. 预浸料工艺制备氧化铝纤维增强氧化铝陶瓷基复合材料[J]. 稀有金属材料与工程, 2022, 51(4): 1391-1396. LIANG Y Y, QIU H P, MA X, et al. Preparation of alumina fiber reinforced alumina ceramic matrix composite by prepreg process[J]. Rare Metal Materials and Engineering, 2022, 51(4): 1391-1396 (in Chinese). [60] PUCHAS G, HELD A, KRENKEL W. Near-net shape manufacture process for oxide fiber composites (OFC)[J]. Materials Today: Proceedings, 2019, 16: 49-58. [61] PUCHAS G, MÖCKEL S, KRENKEL W. Novel prepreg manufacturing process for oxide fiber composites[J]. Journal of the European Ceramic Society, 2020, 40(15): 5930-5941. [62] DÉBARRE A, JULIAN-JANKOWIAK A, PARLIER M, et al. Effect of temperature on the mechanical behaviour of an oxide/oxide composite[J]. Journal of the European Ceramic Society, 2022, 42(15): 7149-7156. [63] YANG Z M, LIU H. Effects of thermal aging on the cyclic thermal shock behavior of oxide/oxide ceramic matrix composites[J]. Materials Science and Engineering: A, 2020, 769: 138494. [64] PIRZADA T J, LIU D, ELL J, et al. In situ observation of the deformation and fracture of an alumina-alumina ceramic-matrix composite at elevated temperature using X-ray computed tomography[J]. Journal of the European Ceramic Society, 2021, 41(7): 4217-4230. [65] ZHU C X, CAO F, XIANG Y, et al. Effects of sintering temperature on mechanical properties of alumina fiber reinforced alumina matrix composites[J]. Journal of Sol-Gel Science and Technology, 2020, 93(1): 185-192. [66] XIANG Y, ZHANG W, CHEN K, et al. High-temperature mechanical property and thermal shock resistance of Al2O3f/Al2O3 composites[J]. International Journal of Applied Ceramic Technology, 2022, 19(6): 3267-3278. [67] WANG S, LUO F, GUO J, et al. Effect of preparation conditions on mechanical, dielectric and wave-transparent properties of Al2O3f/mullite composites[J].Journal of Materials Science: Materials in Electronics, 2022, 33(25): 20317-20327. |
[1] | 林正祥, 唐晓丹, 于常胜, 白治朋, 职芳芳, 靳卫准, 王良, 蒋林华. 湿度和温度对MXene水泥基复合材料导电性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3117-3124. |
[2] | 张品乐, 邓让, 胡静, 吴磊, 陶忠. 钢-PVA混杂纤维增强工程水泥基复合材料弯曲性能研究[J]. 硅酸盐通报, 2023, 42(9): 3125-3134. |
[3] | 邓祥辉, 张鹏, 王睿, 吴起源, 王旭. 青藏高原地区纤维混凝土抗冻耐久性试验与损伤模型研究[J]. 硅酸盐通报, 2023, 42(9): 3143-3153. |
[4] | 黄荣贵, 陶忠, 吴磊, 沈金金, 徐伟杰. 聚乙烯醇纤维对磷建筑石膏基复合材料性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3258-3266. |
[5] | 彭蔓, 高涌涛, 韩杨, 陈秀丽, 寇雄俊. 废旧钢纤维增强橡胶混凝土力学性能试验研究[J]. 硅酸盐通报, 2023, 42(9): 3286-3294. |
[6] | 邓佳威, 熊新锐, 徐协文, 刘鹏, 杨现锋, 谢志鹏. 细晶氧化铝陶瓷基板的流延成型和显微结构控制研究[J]. 硅酸盐通报, 2023, 42(9): 3306-3314. |
[7] | 吴辉琴, 刘星池, 陈宇良. 碳纤维再生混凝土循环受压性能及本构关系研究[J]. 硅酸盐通报, 2023, 42(8): 2743-2753. |
[8] | 王二成, 李格格, 柴颖珂, 张红春, 李彦苍, 王燕杰. 钢-剑麻混杂纤维再生混凝土断裂性能研究[J]. 硅酸盐通报, 2023, 42(8): 2754-2763. |
[9] | 龚明子, 潘阿馨, 张子龙, 王涛, 饶先鹏, 陈晨, 黄伟. 超高性能纤维增强混凝土中钢纤维拔出行为研究[J]. 硅酸盐通报, 2023, 42(8): 2764-2772. |
[10] | 李海礁, 王加军, 韩希平, 陶琦, 张仕龙. 大掺量矿物掺合料纤维增强轻骨料混凝土的抗疲劳性能[J]. 硅酸盐通报, 2023, 42(8): 2856-2864. |
[11] | 李琦旺, 张卫珂, 王佳玮, 高博文, 陈柳玲. Si-C-N-Al的表面限域合成及其电化学性能研究[J]. 硅酸盐通报, 2023, 42(8): 2895-2903. |
[12] | 邓丽娜, 易帅, 王明刚, 李伟豪, 司国栋, 姜文博, 王长安, 谢金莉. 两种氧化铝粉对熔铸AZS耐火材料结构和性能的影响[J]. 硅酸盐通报, 2023, 42(8): 2952-2959. |
[13] | 娄童芳, 徐红杰, 潘继民, 张炎, 雷红红. 基于纳米氧化锌-石墨复合材料的电化学传感器检测对苯二酚[J]. 硅酸盐通报, 2023, 42(8): 3005-3016. |
[14] | 孙庭超, 曾德明, 曹明莉. 硅烷偶联剂改性钢纤维水泥基复合材料弯曲性能研究[J]. 硅酸盐通报, 2023, 42(7): 2326-2335. |
[15] | 戎泽斌, 王成. 基于灰色-神经网络组合模型的纤维混凝土腐蚀劣化预测模型研究[J]. 硅酸盐通报, 2023, 42(7): 2429-2438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||