[1] 董瑞鑫, 申向东, 薛慧君, 等. 干湿循环作用下风积沙混凝土的抗硫酸盐侵蚀机理[J]. 材料导报, 2020, 34(24): 24040-24044.
DONG R X, SHEN X D, XUE H J, et al. Sulfate resistance mechanism of aeolian sand concrete under dry-wet cycles[J]. Materials Review, 2020, 34(24): 24040-24044 (in Chinese).
[2] 董 伟, 付前旺, 刘 鑫, 等. 水和氯离子在风积沙混凝土中的迁移规律[J]. 排灌机械工程学报, 2022, 40(9): 908-914
DONG W, FU Q W, LIU X, et al. Migration law of water and chloride ions in aeolian sand concrete[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(9): 908-914 (in Chinese).
[3] 董 伟, 付前旺, 申向东, 等. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 65-70.
DONG W, FU Q W, SHEN X D, et al. Grey entropy analysis on effect of pore structure on compressive strength of aeolian sand concrete after salt-freezing[J]. Materials Reports, 2023, 37(2): 65-70 (in Chinese).
[4] 董 伟, 周梦虎, 王雪松, 等. 碳化-干湿循环作用下风积沙混凝土氯离子传输试验研究[J]. 水资源与水工程学报, 2023, 34(2): 157-162.
DONG W, ZHOU M H, WANG X S, et al. Chloride ion transport in aeolian sand concrete under carbonization and dry-wet cycle[J]. Journal of Water Resources and Water Engineering, 2023, 34(2): 157-162 (in Chinese).
[5] DONG W, JI Y J. Chloride ion transport and service life prediction of aeolian sand concrete under dry-wet cycles[J]. Science and Engineering of Composite Materials, 2023, 30(1): 1-11.
[6] 李玉根, 张慧梅, 陈少杰, 等. 风积沙混凝土盐冻多尺度劣化机制[J]. 复合材料学报, 2023, 40(4): 2331-2342.
LI Y G, ZHANG H M, CHEN S J, et al. Multi-scale degradation mechanism of aeolian sand concrete under salt-frost condition[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2331-2342 (in Chinese).
[7] LI Y G, ZHANG H M, LIU G X, et al. Multi-scale study on mechanical property and strength prediction of aeolian sand concrete[J]. Construction and Building Materials, 2020, 247: 118538.
[8] XUE H J, SHEN X D, WANG R Y, et al. Mechanism analysis of chloride resistance of aeolian sand concrete under wind-sand erosion and dry-wet circulation[J]. Editorial Office of Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(18): 118-126.
[9] XUE H J, SHEN X D, LIU Q, et al. Analysis of the damage to the aeolian sand concrete surfaces caused by wind-sand erosion[J]. Journal of Advanced Concrete Technology, 2017, 15(12): 724-737.
[10] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999: 50-200.
WU Z W, LIAN H Z. High performance concrete [M]. Beijing: China Railway Press, 1999: 50-200 (in Chinese).
[11] TYROLOGOU P, DUDENEY A W L, GRATTONI C A. Evolution of porosity in geotechnical composites[J]. Magnetic Resonance Imaging, 2005, 23(6): 765-768.
[12] DE J CANO-BARRITA P F, CASTELLANOS F, RAMÍREZ-ARELLANES S, et al. Monitoring compressive strength of concrete by nuclear magnetic resonance, ultrasound, and rebound hammer[J]. ACI Materials Journal, 2015, 112(1): 147-154.
[13] 房天齐,黄 舒,乔秀臣.循环流化床灰蒸压加气混凝土中延迟形成钙矾石的研究[J].硅酸盐通报, 2023, 42(7): 2439-2446.
FANG T Q, HUANG S, QIAO X C. Delayed formation of ettringite in autoclaved aerated concrete with circulating fluidized bed fly ash[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2439-2446 (in Chinese).
[14] 杜新宇, 陈 潇, 周明凯, 等. 含硫酸盐类固废对硅酸盐水泥水化影响研究[J]. 硅酸盐通报, 2023, 42(5): 1710-1720.
DU X Y, CHEN X, ZHOU M K, et al. Study on the influence of sulfate-containing solid waste on hydration of Portland cement[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1710-1720 (in Chinese).
[15] 刘云强, 左晓宝, 黎 亮, 等. 硫酸盐侵蚀下硬化水泥浆体微结构演变及膨胀过程的数值模拟[J]. 硅酸盐通报, 2022, 41(12): 4128-4138.
LIU Y Q, ZUO X B, LI L, et al. Numerical simulation on microstructure evolution and expansion process of hardened cement paste under sulfate attack[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4128-4138 (in Chinese).
[16] 李妤茜, 乔秀臣. 外部因素对钙矾石晶体结构及形貌的影响综述[J]. 硅酸盐通报, 2023, 42(1): 31-47.
LI Y X, QIAO X C. Review on influences of external factors on crystal structure and morphology of ettringite[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 31-47 (in Chinese). |