[1] WU H S, SHEN A Q, REN G P, et al. Dynamic mechanical properties of fiber-reinforced concrete: a review[J]. Construction and Building Materials, 2023, 366: 130145. [2] 杨晓华, 罗 滔, 刘晓剑, 等. 初始缝高比对钢纤维混凝土断裂性能的影响[J]. 硅酸盐通报, 2022, 41(10): 3465-3474. YANG X H, LUO T, LIU X J, et al. Effect of initial joint height ratio on fracture properties of steel fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3465-3474 (in Chinese). [3] AMMENDOLEA D, GRECO F, LEONETTI L, et al. A numerical failure analysis of nano-filled ultra-high-performance fiber-reinforced concrete structures via a moving mesh approach[J]. Theoretical and Applied Fracture Mechanics, 2023, 125: 103877. [4] ZHANG P, WANG C, GAO Z, et al. A review on fracture properties of steel fiber reinforced concrete[J]. Journal of Building Engineering, 2023, 67: 105975. [5] ABADEL A A, ABBAS H, ALSHAIKH I M H, et al. Experimental study on the effects of external strengthening and elevated temperature on the shear behavior of ultra-high-performance fiber-reinforced concrete deep beams[J]. Structures, 2023, 49: 943-957. [6] ZHANG L F, SUN X T, XIE H, et al. Three-dimensional mesoscale modeling and failure mechanism of concrete with four-phase[J]. Journal of Building Engineering, 2023, 64: 105693. [7] ZHANG J H, WU Z Y, YU H F, et al. Mesoscopic modeling approach and application for steel fiber reinforced concrete under dynamic loading: a review[J]. Engineering, 2022, 16: 220-238. [8] SARRAZ A, NAKAMURA H, MIURA T. Mesoscale modelling of SFRC based on 3D RBSM considering the effects of fiber shape and orientation[J]. Cement and Concrete Composites, 2023, 139: 105039. [9] WANG X L, LI W J, LIU Y Q, et al. Bond performance of reinforcing bars in SFRC: experiments and meso-mechanical model[J]. Composite Structures, 2023, 318: 117092. [10] CHEN Z, LIU Y S, WANG M Z, et al. Effect of coarse aggregate grading optimization on temperature, thermal stress and compressive strength of carbon fiber-reinforced concrete by ohmic heating curing[J]. Journal of Building Engineering, 2023, 66: 105882. [11] 赵人达, 赵成功, 原 元, 等. UHPC中钢纤维的应用研究进展[J]. 中国公路学报, 2021, 34(8): 1-22. ZHAO R D, ZHAO C G, YUAN Y, et al. Research progress on application of steel fiber in UHPC[J]. China Journal of Highway and Transport, 2021, 34(8): 1-22 (in Chinese). [12] LUO L L, ZHAO M Y. The secondary development of ABAQUS by using python and the application of the advanced GA[J]. Physics Procedia, 2011, 22: 68-73. [13] ZHAO X N, GUI Z Z, CHEN X Y, et al. Finite element analysis and experiment study on the elastic properties of randomly and controllably distributed carbon fiber-reinforced hydroxyapatite composites[J]. Ceramics International, 2021, 47(9): 12613-12622. [14] TAO X J, LUO J L, ZHANG J G, et al. Progress in FEM modeling on mechanical and electromechanical properties of carbon nanotube cement-based composites[J]. Nanotechnology Reviews, 2023, 12(1): 20220522. [15] 王 赟. 骨料对混凝土力学性能的影响研究[J]. 硅酸盐通报, 2015, 34(5): 1329-1332+1338. WANG Y. Study on the influence of aggregate on concrete mechanics performance[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(5): 1329-1332+1338 (in Chinese). [16] ALSHBOUL O, ALMASABHA G, AL-SHBOUL K F, et al. A comparative study of shear strength prediction models for SFRC deep beams without stirrups using Machine learning algorithms[J]. Structures, 2023, 55: 97-111. [17] SHOAIB A, LUBELL A S. Effect of mix composition on the mechanical properties of SFRC[J]. Construction and Building Materials, 2021, 286: 122760. [18] CABALLERO A, LÓPEZ C M, CAROL I. 3D meso-structural analysis of concrete specimens under uniaxial tension[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(52): 7182-7195. [19] JIA J Y, GU X L. Effects of coarse aggregate surface morphology on aggregate-mortar interface strength and mechanical properties of concrete[J]. Construction and Building Materials, 2021, 294: 123515. [20] 兰晓芳. 基于扩展有限元的钢纤维混凝土断裂破坏数值研究[D]. 郑州: 郑州大学, 2019: 31. LAN X F. Numerical study on fracture failure of steel fiber reinforced concrete based on extended finite element method[D]. Zhengzhou: Zhengzhou University, 2019: 31 (in Chinese). [21] 杨帛臻. 基于细观尺度的混杂纤维混凝土破坏过程数值模拟[D]. 宜昌: 三峡大学, 2019: 34. YANG B Z. Numerical simulation of failure process of hybrid fiber reinforced concrete based on meso-scale[D]. Yichang: China Three Gorges University, 2019: 34 (in Chinese). [22] 薛 兵. 基于细观尺度的钢纤维混凝土损伤破坏数值模拟研究[D]. 徐州: 中国矿业大学, 2017: 65. XUE B. Numerical simulation of damage and failure of steel fiber reinforced concrete based on mesoscale[D]. Xuzhou: China University of Mining and Technology, 2017: 65 (in Chinese). [23] 方 秦, 张锦华, 还 毅, 等. 全级配混凝土三维细观模型的建模方法研究[J]. 工程力学, 2013, 30(1): 14-21+30. FANG Q, ZHANG J H, HUAN Y, et al. The investigation into three-dimensional mesoscale modelling of fully-graded concrete[J]. Engineering Mechanics, 2013, 30(1): 14-21+30 (in Chinese). [24] 吴宇航, 肖映雄, 徐亚飞. 基于Python-Abaqus的混凝土三维细观随机模型的建立[J]. 计算力学学报, 2022, 39(5): 566-573. WU Y H, XIAO Y X, XU Y F. Establishment of three-dimensional meso-stochastic model of concrete based on Python-Abaqus[J]. Chinese Journal of Computational Mechanics, 2022, 39(5): 566-573 (in Chinese). [25] 熊 汪, 覃书豪, 彭定东, 等. 基于三维细观模型的玄武岩纤维混凝土数值模拟[J/OL]. 建筑科学与工程学报, 2023: 1-10 [2023-06-02]. http://kns.cnki.net/kcms/detail/61.1442.tu.20230210.1546.002.html. XIONG W, QIN S H, PENG D D, et al. Numerical simulation of basalt fiber concrete based on 3D mesoscale model[J/OL]. Journal of Architecture and Civil Engineering, 2023: 1-10 [2023-06-02]. http://kns.cnki.net/kcms/detail/61.1442.tu.20230210.1546.002.html (in Chinese). [26] 张添奇, 王伯昕. 玄武岩纤维编织网的网格尺寸对混凝土拉伸性能的影响[J]. 硅酸盐通报, 2022, 41(6): 1938-1945. ZHANG T Q, WANG B X. Effect of grid size on tensile performance of basalt textile reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 1938-1945 (in Chinese). [27] KIM J S, LEE H J, KIM Y J, et al. The mesh density effect on stress intensity factor calculation using ABAQUS XFEM[J]. Journal of Mechanical Science and Technology, 2019, 33(10): 4909-4916. [28] YA S K, EISENTRÄGER S, SONG C M, et al. An open-source ABAQUS implementation of the scaled boundary finite element method to study interfacial problems using polyhedral meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 381: 113766. [29] 汪 凯, 燕远岭, 赵 哲, 等. 界面过渡区与骨料特征对混凝土强度及变形影响的数值模拟研究[J]. 硅酸盐通报, 2023, 42(4): 1298-1308+1322. WANG K, YAN Y L, ZHAO Z, et al. Numerical simulation study on effects of interface transition zone and aggregate characteristics on strength and deformation of concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1298-1308+1322 (in Chinese). [30] SETIAWAN Y, GAN B S, HAN A L. Modeling of the ITZ zone in concrete: experiment and numerical simulation[J]. Computers and Concrete. 2017, 19(6): 641-649. [31] 申艳军, 张 欢, 潘 佳, 等. 混凝土界面过渡区微-细观结构识别及形成机制研究进展[J]. 硅酸盐通报, 2020, 39(10): 3055-3069. SHEN Y J, ZHANG H, PAN J, et al. Research progress on identification and formation mechanism of microstructures in interface transition zone of concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3055-3069 (in Chinese). [32] AMIN M N, AHMAD W, KHAN K, et al. Steel fiber-reinforced concrete: a systematic review of the research progress and knowledge mapping[J]. Materials, 2022, 15(17): 6155. [33] 卢秋如, 曾彦钦, 胡 煊. 钢-聚丙烯混杂纤维超高性能混凝土受压细观数值模拟[J]. 科学技术与工程, 2023, 23(4): 1683-1690. LU Q R, ZENG Y Q, HU X. Meso-numerical simulation of steel-polypropylene hybrid fiber ultra-high performance concrete under compression[J]. Science Technology and Engineering, 2023, 23(4): 1683-1690 (in Chinese). [34] YILMAZ O, MOLINARI J F. A mesoscale fracture model for concrete[J]. Cement and Concrete Research, 2017, 97: 84-94. [35] WANG S Y, ZHUANG M L, XUE X. Experimental and numerical investigations on crack intersection and propagation of concrete structures[J]. International Journal of Concrete Structures and Materials, 2022, 16(1): 1-21. [36] XU P, MA J Y, DING Y H, et al. Influences of steel fiber content on size effect of the fracture energy of high-strength concrete[J]. KSCE Journal of Civil Engineering, 2021, 25(3): 948-959. [37] ALI S H, ABID S R, AL-LAMI K, et al. Experimental and statistical analysis of repeated impact records of hybrid fiber-reinforced high-performance concrete[J]. Buildings, 2023, 13(3): 678. [38] LI F Y, CUI Y X, CAO C Y, et al. Experimental study of the tensile and flexural mechanical properties of directionally distributed steel fibre-reinforced concrete[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(9): 1721-1732. |