[1] 吕 淼, 安雪晖, 李鹏飞, 等. 自密实混凝土全过程智能生产研究进展[J]. 清华大学学报(自然科学版), 2022, 62(8): 1270-1280. LÜ M, AN X H, LI P F, et al. Review of smart production techniques for the entire self-compacting concrete production process[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(8): 1270-1280 (in Chinese). [2] 王怀亮. 钢纤维高性能轻骨料混凝土多轴强度和变形特性研究[J]. 工程力学, 2019, 36(8): 122-132. WANG H L. Strength and deformation properties of high performance steel fiber reinforced lightweight concrete under multiaxial compression[J]. Engineering Mechanics, 2019, 36(8): 122-132 (in Chinese). [3] 赵 云, 毕继红, 王照耀, 等. 矿渣粉对钢纤维自密实混凝土性能的影响[J]. 建筑材料学报, 2022, 25(1): 24-30. ZHAO Y, BI J H, WANG Z Y, et al. Influence of granulated blast furnace slag on the properties of steel fiber reinforced self-compacting concrete[J]. Journal of Building Materials, 2022, 25(1): 24-30 (in Chinese). [4] 张 聪, 夏超凡, 袁 振, 等. 火灾下纤维自密实混凝土的爆裂行为预测[J]. 建筑材料学报, 2021, 24(2): 260-267+282. ZHANG C, XIA C F, YUAN Z, et al. Spalling behaviour prediction for fiber reinforced self-consolidating concrete under fire[J]. Journal of Building Materials, 2021, 24(2): 260-267+282 (in Chinese). [5] LI L, WANG Z C, WU J, et al. Comparative study on the dynamic mechanical properties of steel fiber reinforced concrete at high temperatures and after high temperature cooling[J]. Construction and Building Materials, 2022, 346: 128448. [6] 王连坤, 蔡凯鹏, 陈伟杰, 等. 高温后不同冷却方式下自密实混凝土力学性能研究[J]. 消防科学与技术, 2022, 41(2): 191-196. WANG L K, CAI K P, CHEN W J, et al. Study on mechanical properties of self-compacting concrete under different cooling methods after high temperature[J]. Fire Science and Technology, 2022, 41(2): 191-196 (in Chinese). [7] 陶 津, 柳 献, 袁 勇, 等. 自密实混凝土高温爆裂性能影响因素的试验研究[J]. 土木工程学报, 2009, 42(10): 22-26. TAO J, LIU X, YUAN Y, et al. Experimental study of factors affecting the spalling of self-compacting concrete under high temperatures[J]. China Civil Engineering Journal, 2009, 42(10): 22-26 (in Chinese). [8] SADRMOMTAZI A, GASHTI S H, TAHMOURESI B. Residual strength and microstructure of fiber reinforced self-compacting concrete exposed to high temperatures[J]. Construction and Building Materials, 2020, 230: 116969. [9] KARATAS M, DENER M, BENLI A, et al. High temperature effect on the mechanical behavior of steel fiber reinforced self-compacting concrete containing ground pumice powder[J]. Structural Concrete, 2019, 20(5): 1734-1749. [10] 申海洋, 刘凌晖, 任 磊. 高温作用下轻骨料混凝土力学性能研究[J]. 铁道科学与工程学报, 2022, 19(10): 2976-2983. SHEN H Y, LIU L H, REN L. Study on mechanical properties of lightweight aggregate concrete under high temperature[J]. Journal of Railway Science and Engineering, 2022, 19(10): 2976-2983 (in Chinese). [11] 刘志恒, 陈徐东, 胡良鹏, 等. 重复冲击下高温后橡胶自密实混凝土动态力学性能[J]. 工程科学与技术, 2023, 55(4): 169-178. LIU Z H, CHEN X D, HU L P, et al. Investigation on the dynamic mechanical properties of thermally treated rubberized self-compacting concrete under repeated impact[J]. Advanced Engineering Sciences, 2023, 55(4): 169-178 (in Chinese). [12] 刘兵兵, 季日臣, 吕生玺. 基于ANSYS/LS-DYNA水下钻孔爆破数值模拟[J]. 科学技术与工程, 2021, 21(27): 11776-11782. LIU B B, JI R C, LÜ S X. Numerical simulation of underwater drilling blasting based on ANSYS/LS-DYNA[J]. Science Technology and Engineering, 2021, 21(27): 11776-11782 (in Chinese). [13] 张社荣, 宋 冉, 王 超, 等. 碾压混凝土HJC动态本构模型修正及数值验证[J]. 振动与冲击, 2019, 38(12): 25-31. ZHANG S R, SONG R, WANG C, et al. Modification of a dynamic constitutive model-HJC model for roller-compacted concrete and numerical verification[J]. Journal of Vibration and Shock, 2019, 38(12): 25-31 (in Chinese). [14] 巫绪涛, 李 耀, 李和平. 混凝土HJC本构模型参数的研究[J]. 应用力学学报, 2010, 27(2): 340-344+443. WU X T, LI Y, LI H P. Research on the material constants of the HJC dynamic constitutive model for concrete[J]. Chinese Journal of Applied Mechanics, 2010, 27(2): 340-344+443 (in Chinese). [15] XU Z H, HE T, LIU Y W, et al. Study on dynamic splitting properties of S-PP hybrid fiber concrete after high temperatures[J]. Applied Sciences, 2022, 12(17): 8437. [16] 邓宗才. 混杂纤维增强超高性能混凝土弯曲韧性与评价方法[J]. 复合材料学报, 2016, 33(6): 1274-1280. DENG Z C. Flexural toughness and characterization method of hybrid fibers reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1274-1280 (in Chinese). [17] 金 浏, 张仁波, 杜修力, 等. 温度对混凝土结构力学性能影响的研究进展[J]. 土木工程学报, 2021, 54(3): 1-18. JIN L, ZHANG R B, DU X L, et al. Research progress on the influence of temperature on the mechanical performance of concrete structures[J]. China Civil Engineering Journal, 2021, 54(3): 1-18 (in Chinese). [18] 田 威, 高芳芳, 贺 礼. 高温后碳纳米管混凝土力学性能及细观结构变化[J]. 浙江大学学报(工学版), 2022, 56(11): 2280-2289. TIAN W, GAO F F, HE L. Variation of mechanical property and meso structure of MWCNTs concrete exposed to high temperature[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(11): 2280-2289 (in Chinese). [19] 赵燕茹, 刘 明, 王 磊, 等. 碳化高温后普通混凝土抗压强度及孔结构演化规律[J]. 材料导报, 2022, 36(19): 110-117. ZHAO Y R, LIU M, WANG L, et al. Evolution law of concrete strength and pore structure after carbonization at high temperature[J]. Materials Reports, 2022, 36(19): 110-117 (in Chinese). [20] 朱柏衡, 刘华新. 高温后混杂纤维再生混凝土力学性能试验研究[J]. 铁道科学与工程学报, 2021, 18(6): 1479-1485. ZHU B H, LIU H X. Experimental study on mechanical properties of hybrid fiber reinforced recycled concrete after high temperature[J]. Journal of Railway Science and Engineering, 2021, 18(6): 1479-1485 (in Chinese). [21] 宋 力, 胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4): 368-373. SONG L, HU S S. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves, 2005, 25(4): 368-373 (in Chinese). [22] 龚建清, 邓国旗, 单 波. 活性粉末混凝土高温后超声研究及微观分析[J]. 湖南大学学报(自然科学版), 2018, 45(1): 68-76. GONG J Q, DENG G Q, SHAN B. Ultrasonic test and microscopic analysis of reactive powder concrete exposed to high temperature[J]. Journal of Hunan University (Natural Sciences), 2018, 45(1): 68-76 (in Chinese). [23] FARES H, REMOND S, NOUMOWE A, et al. High temperature behaviour of self-consolidating concrete[J]. Cement and Concrete Research, 2010, 40(3): 488-496. [24] 金解放, 杨 益, 廖占象, 等. 动荷载与地应力对岩石响应特性的影响试验研究[J]. 岩石力学与工程学报, 2021, 40(10): 1990-2002. JIN J F, YANG Y, LIAO Z X, et al. Effect of dynamic loads and geo-stresses on response characteristics of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 1990-2002 (in Chinese). [25] 张永生. 冲击荷载下玄武岩纤维混凝土动态力学特性试验研究[J]. 混凝土, 2023(2): 25-29. ZHANG Y S. Experimental study on dynamic mechanical properties of basalt fiber concrete under impact load[J]. Concrete, 2023(2): 25-29 (in Chinese). [26] 张 娜, 周 健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(增刊1): 241-245. ZHANG N, ZHOU J. Study on strain rate effect of basalt fiber cement composites after high temperature treatment[J]. Materials Reports, 2022, 36(supplement 1): 241-245 (in Chinese). [27] 王振波, 李鹏飞, 韩宇栋, 等. 混杂纤维珊瑚骨料混凝土冲击压缩性能的试验与模拟[J]. 硅酸盐学报, 2022, 50(11): 2897-2908. WANG Z B, LI P F, HAN Y D, et al. Test and simulation of impact compressive properties of hybrid fiber reinforced coral aggregate concrete[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2897-2908 (in Chinese). [28] 宋 帅, 杜 闯, 李艳艳. 超高性能混凝土HJC本构模型参数确定及应用[J]. 爆炸与冲击, 2023, 43(5): 57-69. SONG S, DU C, LI Y Y. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete[J]. Explosion and Shock Waves, 2023, 43(5): 57-69 (in Chinese). [29] 任根茂, 吴 昊, 方 秦, 等. 普通混凝土HJC本构模型参数确定[J]. 振动与冲击, 2016, 35(18): 9-16. REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete[J]. Journal of Vibration and Shock, 2016, 35(18): 9-16 (in Chinese). |