硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (11): 3787-3798.
所属专题: 水泥混凝土
• 水泥混凝土 • 下一篇
李茂森1, 王露1, 王军2, 李曦2, 徐芬莲2, 刘数华1
收稿日期:
2023-06-05
修订日期:
2023-08-15
出版日期:
2023-11-15
发布日期:
2023-11-22
通信作者:
刘数华,博士,教授。E-mail:shliu@whu.edu.cn
作者简介:
李茂森(1996—),男,博士研究生。主要从事水泥基材料耐久性方面的研究。E-mail:limaosen@whu.edu.cn
基金资助:
LI Maosen1, WANG Lu1, WANG Jun2, LI Xi2, XU Fenlian2, LIU Shuhua1
Received:
2023-06-05
Revised:
2023-08-15
Online:
2023-11-15
Published:
2023-11-22
摘要: 在国家积极推进碳达峰、碳中和目标背景下,水泥行业减少碳排放势在必行。大掺量矿物掺合料混凝土使用了大量矿物掺合料,大幅减少了水泥用量,因此受到较大关注。本文重点综述了大掺量矿物掺合料混凝土的碳化行为、微观机理研究现状和常用矿物掺合料对混凝土抗碳化性能的影响;总结了混凝土碳化的影响因素,以及碳化行为的测试评价方法和优缺点;最后,提出了碳化可能存在的途径,并指明了进一步的研究方向,这对于改善大掺量矿物掺合料混凝土耐久性和降低建筑行业碳排放具有重要意义。
中图分类号:
李茂森, 王露, 王军, 李曦, 徐芬莲, 刘数华. 大掺量矿物掺合料混凝土碳化行为研究进展[J]. 硅酸盐通报, 2023, 42(11): 3787-3798.
LI Maosen, WANG Lu, WANG Jun, LI Xi, XU Fenlian, LIU Shuhua. Research Progress on Carbonation Behavior of Concrete with Large Volume of Mineral Admixture[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(11): 3787-3798.
[1] AHMAD J, KONTOLEON K J, MAJDI A, et al. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production[J]. Sustainability, 2022, 14(14): 8783. [2] MALAMI C, KALOIDAS V, BATIS G, et al. Carbonation and porosity of mortar specimens with pozzolanic and hydraulic cement admixtures[J]. Cement and Concrete Research, 1994, 24(8): 1444-1454. [3] 柳俊哲. 混凝土碳化研究与进展(1): 碳化机理及碳化程度评价[J]. 混凝土, 2005(11): 10-13+23. LIU J Z. A review of carbonation in reinforced concrete(Ⅰ): mechanism of carbonation and evaluative methods[J]. Concrete, 2005(11): 10-13+23 (in Chinese). [4] PACHECO T F, MIRALDO S, LABRINCHA J A, et al. An overview on concrete carbonation in the context of eco-efficient construction: evaluation, use of SCMs and/or RAC[J]. Construction and Building Materials, 2012, 36: 141-150. [5] 陈嘉俊. 碳化环境混凝土耐久性劣化机理与影响因素分析[J]. 江西建材, 2021(1): 14-15+17. CHEN J J. Mechanism and influencing factors of durability deterioration of concrete in carbonation environment[J]. Jiangxi Building Materials, 2021(1): 14-15+17 (in Chinese). [6] PAPADAKIS V G, FARDIS M N, VAYENAS C G. Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation[J]. Materials and Structures, 1992, 25(5): 293-304. [7] HUET B, L'HOSTIS V, MISERQUE F, et al. Electrochemical behavior of mild steel in concrete: influence of pH and carbonate content of concrete pore solution[J]. Electrochimica Acta, 2005, 51(1): 172-180. [8] LUO S, GUO M Z, LING T C. Mechanical and microstructural performances of fly ash blended cement pastes with mixing CO2 during fresh stage[J]. Construction and Building Materials, 2022, 358: 129444. [9] 贾耀东. 大掺量矿物掺合料混凝土的碳化特性研究[D]. 北京: 清华大学, 2010. JIA Y D. Study on carbonation characteristics of concrete with large amount of mineral admixture[D]. Beijing: Tsinghua University, 2010 (in Chinese). [10] 尹 航. 大掺量矿物掺合料混凝土碳化性能研究[D]. 秦皇岛: 燕山大学, 2016. YIN H. Study on carbonation performance of concrete with large amount of mineral admixture[D]. Qinhuangdao: Yanshan University, 2016 (in Chinese). [11] 刘 斌. 大掺量粉煤灰混凝土的抗碳化性能[J]. 混凝土, 2003(3): 44-48. LIU B. Carbonation resistance property of the high fly-ash content contrete[J]. Concrete, 2003(3): 44-48 (in Chinese). [12] 甘昌成, 麦 锐, 李建庭, 等. 大掺量掺合料混凝土抗碳化性能的评估分析[J]. 粉煤灰综合利用, 2011, 24(3): 10-16. GAN C C, MAI R, LI J T, et al. Appraisal analysis on carbonation resistance of concrete with high-volume admixture[J]. Fly Ash Comprehensive Utilization, 2011, 24(3): 10-16 (in Chinese). [13] 杜晋军, 金祖权, 蒋金洋. 粉煤灰混凝土的碳化研究[J]. 粉煤灰, 2005, 17(6): 9-11. DU J J, JIN Z Q, JIANG J Y. Experimental study of fly ash concrete carbonization[J]. Coal Ash China, 2005, 17(6): 9-11 (in Chinese). [14] 陈金平. 大掺量粉煤灰高性能混凝土碳化性能研究[J]. 施工技术, 2010, 39(4): 87-89. CHEN J P. Research on carbonation resistance of high-performance concrete containing large amount of fly ash[J]. Construction Technology, 2010, 39(4): 87-89 (in Chinese). [15] 陈 茜. 不同条件下粉煤灰对混凝土抗Cl-渗透和抗碳化性能的影响[J]. 混凝土世界, 2019(10): 67-71. CHEN Q. The influence of fly ash on the anti-Cl- penetration and carbonation resistance of concrete under different conditions[J]. China Concrete, 2019(10): 67-71 (in Chinese). [16] 张文之, 刘 敏. 不同养护条件对大掺量粉煤灰混凝土抗碳化性能试验研究[J]. 硅酸盐通报, 2017, 36(8): 2619-2624. ZHANG W Z, LIU M. Experimental study on carbonation resistance of high volume fly ash concrete under different curing conditions[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8): 2619-2624 (in Chinese). [17] 吕志军. 基于混凝土碳化性能的不同养护条件下粉煤灰临界掺量[J]. 石家庄铁道大学学报(自然科学版), 2022, 35(2): 53-59. LYU Z J. Critical content of fly ash under different curing conditions based on carbonation performance[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2022, 35(2): 53-59 (in Chinese). [18] ZHANG W Y, NA S, KIM J, et al. Evaluation of the combined deterioration by freeze-thaw and carbonation of mortar incorporating BFS, limestone powder and calcium sulfate[J]. Materials and Structures, 2017, 50(3): 171. [19] 刘数华, 冷发光, 王 军. 混凝土辅助胶凝材料[M]. 2版. 北京: 人民交通出版社, 2020. LIU S H, LENG H H, WANG J. Concrete auxiliary cementitious materials[M]. 2nd ed. Beijing: People's Transportation Publishing House, 2020 (in Chinese). [20] 王培铭, 朱艳芳, 计亦奇, 等. 掺粉煤灰和矿渣粉大流动度混凝土的碳化性能[J]. 建筑材料学报, 2001, 4(4): 305-310. WANG P M, ZHU Y F, JI Y Q, et al. Carbonation resistance of concrete containing ground fly ash and ground granulated blast furnace slag[J]. Journal of Building Materials, 2001, 4(4): 305-310 (in Chinese). [21] 宋 华, 牛荻涛, 李春晖. 矿物掺合料混凝土碳化性能试验研究[J]. 硅酸盐学报, 2009, 37(12): 2066-2070. SONG H, NIU D T, LI C H. Carbonation test of concrete containing mineral admixtures[J]. Journal of the Chinese Ceramic Society, 2009, 37(12): 2066-2070 (in Chinese). [22] 刘海峰, 马荷姣, 刘 宁, 等. 粉煤灰及沙漠砂对混凝土抗碳化性能的影响[J]. 硅酸盐通报, 2017, 36(11): 3823-3828+3847. LIU H F, MA H J, LIU N, et al. Influence of fly ash and desert sand on the carbonation resistance property of concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(11): 3823-3828+3847 (in Chinese). [23] KHUNTHONGKEAW J, TANGTERMSIRIKUL S, LEELAWAT T. A study on carbonation depth prediction for fly ash concrete[J]. Construction and Building Materials, 2006, 20(9): 744-753. [24] SISOMPHON K, FRANKE L. Carbonation rates of concretes containing high volume of pozzolanic materials[J]. Cement and Concrete Research, 2007, 37(12): 1647-1653. [25] ATIŞ C D. Accelerated carbonation and testing of concrete made with fly ash[J]. Construction and Building Materials, 2003, 17(3): 147-152. [26] CABRERA J G, WOOLLEY G R. A study of twenty five year old pulverized fuel ash concrete used in f oundation structures[J]. Proceedings of the Institution of Civil Engineers, 1985, 79(1): 149-166. [27] HOBBS D W. Carbonation of concrete containing pfa[J]. Magazine of Concrete Research, 1994, 46(166): 35-38. [28] PARROTT L J. A study of carbonation-induced corrosion[J]. Magazine of Concrete Research, 1994, 46(166): 23-28. [29] KHAN M I, LYNSDALE C J. Strength, permeability, and carbonation of high-performance concrete[J]. Cement and Concrete Research, 2002, 32(1): 123-131. [30] GRUYAERT E, VAN-DEN-HEEDE P, DE-BELIE N. Carbonation of slag concrete: effect of the cement replacement level and curing on the carbonation coefficient-effect of carbonation on the pore structure[J]. Cement and Concrete Composites, 2013, 35(1): 39-48. [31] KULAKOWSKI M P, PEREIRA F M, MOLIN D C C D. Carbonation-induced reinforcement corrosion in silica fume concrete[J]. Construction and Building Materials, 2009, 23(3): 1189-1195. [32] SULAPHA P, WONG S F, WEE T H, et al. Carbonation of concrete containing mineral admixtures[J]. Journal of Materials in Civil Engineering, 2003, 15(2): 134-143. [33] LIM S, MONDAL P. Effects of incorporating nanosilica on carbonation of cement paste[J]. Journal of Materials Science, 2015, 50(10): 3531-3540. [34] CASTELLOTE M, ANDRADE C. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE[J]. Cement and Concrete Research, 2008, 38(12): 1374-1384. [35] DE WEERDT K, PLUSQUELLEC G, BELDA R A, et al. Effect of carbonation on the pore solution of mortar[J]. Cement and Concrete Research, 2019, 118: 38-56. [36] THIERY M, VILLAIN G, DANGLA P, et al. Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics[J]. Cement and Concrete Research, 2007, 37(7): 1047-1058. [37] CIZER Ö, VAN B K, ELSEN J, et al. Real-time investigation of reaction rate and mineral phase modifications of lime carbonation[J]. Construction and Building Materials, 2012, 35: 741-751. [38] YANG T, KELLER B, MAGYARI E, et al. Direct observation of the carbonation process on the surface of calcium hydroxide crystals in hardened cement paste using an Atomic Force Microscope[J]. Journal of Materials Science, 2003, 38(9): 1909-1916. [39] GALAN I, GLASSER F P, BAZA D, et al. Assessment of the protective effect of carbonation on portlandite crystals[J]. Cement and Concrete Research, 2015, 74: 68-77. [40] ARANDIGOYEN M, BICER-SIMSIR B, ALVAREZ J I, et al. Variation of microstructure with carbonation in lime and blended pastes[J]. Applied Surface Science, 2006, 252(20): 7562-7571. [41] LIU Z Y, VAN-DEN-HEEDE P, ZHANG C, et al. Carbonation of blast furnace slag concrete at different CO2 concentrations: carbonation rate, phase assemblage, microstructure and thermodynamic modelling[J]. Cement and Concrete Research, 2023, 169: 107161. [42] BLACK L, GARBEV K, GEE I. Surface carbonation of synthetic C-S-H samples: a comparison between fresh and aged C-S-H using X-ray photoelectron spectroscopy[J]. Cement and Concrete Research, 2008, 38(6): 745-750. [43] SEVELSTED T F, SKIBSTED J. Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy[J]. Cement and Concrete Research, 2015, 71: 56-65. [44] MORALES F V, FINDLING N, BRUNET F. Changes on the nanostructure of cementitius calcium silicate hydrates (C-S-H) induced by aqueous carbonation[J]. Journal of Materials Science, 2012, 47(2): 764-771. [45] HYVERT N, SELLIER A, DUPRAT F, et al. Dependency of C-S-H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation[J]. Cement and Concrete Research, 2010, 40(11): 1582-1589. [46] RIMMELÉ G, BARLET G V, PORCHERIE O, et al. Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids[J]. Cement and Concrete Research, 2008, 38(8/9): 1038-1048. [47] XU Z H, ZHANG Z X, HUANG J S, et al. Effects of temperature, humidity and CO2 concentration on carbonation of cement-based materials: a review[J]. Construction and Building Materials, 2022, 346: 128399. [48] 黄春霞. 大掺量粉煤灰混凝土碳化深度预测模型试验研究[D]. 杨凌: 西北农林科技大学, 2011. HUANG C X. Experimental study on prediction model of carbonation depth of high volume fly ash concrete[D].Yangling: Northwest A & F University, 2011 (in Chinese). [49] 许丽萍, 黄士元. 预测混凝土中碳化深度的数学模型[J]. 上海建材学院学报, 1991(4): 347-357. XU L P, HUANG S Y. The mathematical model of predicted carbonation depth in concrete[J]. Journal of Building Materials, 1991(4): 347-357 (in Chinese). [50] 李铭杰, 夏 彤, 齐 权, 等. 防水闸混凝土碳化试验及力学性能研究[J]. 水利科技与经济, 2023, 29(3): 150-153. LI M J, XIA T, QI Q, et al. Study on carbonation test and mechanical properties of concrete for waterproof sluice[J]. Water Conservancy Science and Technology and Economy, 2023, 29(3): 150-153 (in Chinese). [51] 魏豪杰, 童建军, 朱 龙, 等. 高温变温养护条件下隧道喷射混凝土抗碳化性能试验[J]. 四川建筑, 2022, 42(1): 190-192. WEI H J, TONG J J, ZHU L, et al. Experiment on carbonation resistance of tunnel shotcrete under high temperature and variable temperature curing conditions[J]. Sichuan Architecture, 2022, 42(1): 190-192 (in Chinese). [52] YANG Y H, XU G, TIAN B. Carbonation characteristics of cement-based materials under the uniform distribution of pore water[J]. Construction and Building Materials, 2021, 275: 121450. [53] 徐 兵, 徐 港, 杨亚会, 等. 孔隙水饱和度对混凝土碳化特性的影响[J]. 水电能源科学, 2018, 36(5): 87-90. XU B, XU G, YANG Y H, et al. Influence of pore water saturation on carbonization characteristics of concrete[J]. Water Resources and Power, 2018, 36(5): 87-90 (in Chinese). [54] HO D W S, LEWIS R K. Carbonation of concrete and its prediction[J]. Cement and Concrete Research, 1987, 17(3): 489-504. [55] SANJUÁN M A, ANDRADE C, CHEYREZY M. Concrete carbonation tests in natural and accelerated conditions[J]. Advances in Cement Research, 2003, 15(4): 171-180. [56] CASTELLOTE M, FERNANDEZ L, ANDRADE C, et al. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations[J]. Materials and Structures, 2009, 42(4): 515-525. [57] 乔欣元. CO2浓度对氢氧化钙碳化性能的影响[J]. 广州化工, 2015, 43(15): 3-4+25. QIAO X Y. Influence of CO2 concentrations on carbonation property of Ca(OH)2[J]. Guangzhou Chemical Industry, 2015, 43(15): 3-4+25 (in Chinese). [58] XIE Y F, SUN T, SHUI Z H, et al. The impact of carbonation at different CO2 concentrations on the microstructure of phosphogypsum-based supersulfated cement paste[J]. Construction and Building Materials, 2022, 340: 127823. [59] XU G, SONG F J, PENG Y Z, et al. Influence of internal and external humidity difference on the distribution characteristics of the carbonated zone of cement-based materials[J]. Journal of Materials in Civil Engineering, 2023, 35(2). [60] MCPOLIN D O, BASHEER P A, LONG A E. Carbonation and pH in mortars manufactured with supplementary cementitious materials[J]. Journal of Materials in Civil Engineering, 2009, 21(5): 217-225. [61] MCPOLIN D O, BASHEER P A, LONG A E, et al. New test method to obtain pH profiles due to carbonation of concretes containing supplementary cementitious materials[J]. Journal of Materials in Civil Engineering, 2007, 19(11): 936-946. [62] CHANG C F, CHEN J W. The experimental investigation of concrete carbonation depth[J]. Cement and Concrete Research, 2006, 36(9): 1760-1767. [63] 张 铖, 王 玲, 姚 燕, 等. 逐层磨粉pH值法测定混凝土碳化深度的试验研究[J]. 材料导报, 2022, 36(7): 174-177. ZHANG C, WANG L, YAO Y, et al. Determination of concrete carbonation depth by testing the pH value of layer-by-layer grinding concrete samples[J]. Materials Reports, 2022, 36(7): 174-177 (in Chinese). [64] 李 蓓, 金南国, 田 野, 等. 热重分析法在混凝土碳化深度检测中的应用[J]. 混凝土与水泥制品, 2020(10): 80-82+86. LI B, JIN N G, TIAN Y, et al. Application of thermogravimetric analysis method in detecting carbonation depth of concrete[J]. China Concrete and Cement Products, 2020(10): 80-82+86 (in Chinese). [65] 何小军, 张成维, 尚艳亮. 采用超声波法检测混凝土碳化深度的可行性分析[J]. 石家庄铁路职业技术学院学报, 2022, 21(1): 54-57. HE X J, ZHANG C W, SHANG Y L. Feasibility analysis of detecting carbonation depth of concrete by ultrasonic method[J]. Journal of Shijiazhuang Institute of Railway Technology, 2022, 21(1): 54-57 (in Chinese). [66] 杨亚会, 覃作舟, 徐 港, 等. 微型精密数显碳化测量仪的研发与应用[J]. 水电能源科学, 2017, 35(5): 172-174. YANG Y H, QIN Z Z, XU G, et al. Development and application of micro-precision digimatic carbonation measuring instrument[J]. Water Resources and Power, 2017, 35(5): 172-174 (in Chinese). [67] WI K, WANG K J, HAN J, et al. Effects of nano palm oil fuel ash on hydration of cement under the accelerated carbonation curing[J]. Materials Letters, 2022, 327: 132935. [68] WANG L, CHEN L, PROVIS J L, et al. Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas[J]. Cement and Concrete Composites, 2020, 106: 103489. [69] PHUNG Q T, MAES N, JACQUES D, et al. Effect of limestone fillers on microstructure and permeability due to carbonation of cement pastes under controlled CO2 pressure conditions[J]. Construction and Building Materials, 2015, 82: 376-390. [70] 苏 滔, 陈 犇, 农喻媚, 等. 含侵蚀性CO2地下水环境下混凝土的碳化试验方法对比分析[J]. 硅酸盐通报, 2020, 39(10): 3090-3100. SU T, CHEN B, NONG Y M, et al. Comparation of concrete carbonization experiment methods in corrosive CO2 groundwater environment[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3090-3100 (in Chinese). [71] LU Z, TAN Q H, LIN J L, et al. Properties investigation of recycled aggregates and concrete modified by accelerated carbonation through increased temperature[J]. Construction and Building Materials, 2022, 341: 127813. [72] XUAN D X, ZHAN B J, POON C S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates[J]. Cement and Concrete Composites, 2016, 65: 67-74. [73] SHI C J, LI Y K, ZHANG J K, et al. Performance enhancement of recycled concrete aggregate-a review[J]. Journal of Cleaner Production, 2016, 112: 466-472. [74] FANG Y F, CHANG J. Microstructure changes of waste hydrated cement paste induced by accelerated carbonation[J]. Construction and Building Materials, 2015, 76: 360-365. [75] FERNÁNDEZ B M, SIMONS S J R, HILLS C D, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2[J]. Journal of Hazardous Materials, 2004, 112(3): 193-205. |
[1] | 刘玉美, 杨浪, 饶峰, 张凯铭, 孙传琳. 氯离子对海工混凝土钢筋腐蚀的研究进展[J]. 硅酸盐通报, 2023, 42(9): 3059-3074. |
[2] | 邓祥辉, 张鹏, 王睿, 吴起源, 王旭. 青藏高原地区纤维混凝土抗冻耐久性试验与损伤模型研究[J]. 硅酸盐通报, 2023, 42(9): 3143-3153. |
[3] | 韦亚平, 李绍成, 王有志, 田长进. 多尺度MgO膨胀剂与SAP协同作用对UHPC力学及收缩性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3154-3165. |
[4] | 贠建洲, 陈顺超, 郑维龙, 聂良鹏, 袁胜涛. 龄期对超声回弹综合法检测混凝土构件的误差影响[J]. 硅酸盐通报, 2023, 42(9): 3166-3175. |
[5] | 李学亮, 赵庆朝, 李伟光, 李勇, 朱阳戈, 宋厚彬, 杨浩, 张艳平. 煤系偏高岭土对混凝土力学性能及微观结构的影响机理[J]. 硅酸盐通报, 2023, 42(9): 3221-3230. |
[6] | 童小根, 张凯峰, 孟刚, 朱王科, 王敏, 付万长. 金尾矿复合砂对不同强度等级混凝土性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3231-3239. |
[7] | 彭蔓, 高涌涛, 韩杨, 陈秀丽, 寇雄俊. 废旧钢纤维增强橡胶混凝土力学性能试验研究[J]. 硅酸盐通报, 2023, 42(9): 3286-3294. |
[8] | 梁文杰, 谭洪波, 吕周岭. 混凝土内源氯离子固化的研究进展[J]. 硅酸盐通报, 2023, 42(8): 2667-2682. |
[9] | 褚洪岩, 安圆圆, 秦健健, 蒋金洋. 轻质高性能混凝土力学性能及微观结构研究[J]. 硅酸盐通报, 2023, 42(8): 2722-2732. |
[10] | 车志豪, 王家滨, 张凯峰, 范一杰. 多元胶凝材料体系再生混凝土复合盐侵蚀耐久性退化规律[J]. 硅酸盐通报, 2023, 42(8): 2733-2742. |
[11] | 吴辉琴, 刘星池, 陈宇良. 碳纤维再生混凝土循环受压性能及本构关系研究[J]. 硅酸盐通报, 2023, 42(8): 2743-2753. |
[12] | 王二成, 李格格, 柴颖珂, 张红春, 李彦苍, 王燕杰. 钢-剑麻混杂纤维再生混凝土断裂性能研究[J]. 硅酸盐通报, 2023, 42(8): 2754-2763. |
[13] | 龚明子, 潘阿馨, 张子龙, 王涛, 饶先鹏, 陈晨, 黄伟. 超高性能纤维增强混凝土中钢纤维拔出行为研究[J]. 硅酸盐通报, 2023, 42(8): 2764-2772. |
[14] | 冯玉钏, 贾小龙, 惠迎新, 韩方元, 万磊. 母岩类型及石粉含量对机制砂混凝土性能影响研究[J]. 硅酸盐通报, 2023, 42(8): 2773-2780. |
[15] | 刘春雨, 袁誉坤, 李丽丽, 方广, 徐凯. 模拟结构用混凝土核废物高温熔融处理研究[J]. 硅酸盐通报, 2023, 42(8): 2781-2786. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||