[1] 杨宇林. 纤维混凝土复合材料耐久性能研究综述[J]. 混凝土, 2012(2): 78-80+85. YANG Y L. Review on durability of complex fiber concrete[J]. Concrete, 2012(2): 78-80+85 (in Chinese). [2] KANDA T, LI V C. Practical design criteria for saturated pseudo strain hardening behavior in ECC[J]. Journal of Advanced Concrete Technology, 2006, 4(1): 59-72. [3] KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites[J]. Cement and Concrete Composites, 2010, 32(2): 110-115. [4] KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Highly dispersed carbon nanotube reinforced cement based materials[J]. Cement and Concrete Research, 2010, 40(7): 1052-1059. [5] SUN G X, LIANG R, LU Z Y, et al. Mechanism of cement/carbon nanotube composites with enhanced mechanical properties achieved by interfacial strengthening[J]. Construction and Building Materials, 2016, 115: 87-92. [6] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cement and Concrete Composites, 2015, 58: 140-147. [7] LV S H, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction and Building Materials, 2013, 49: 121-127. [8] LU Z Y, HOU D S, MA H Y, et al. Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste[J]. Construction and Building Materials, 2016, 119: 107-112. [9] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. [10] LU Z Y, CHEN G C, HAO W B, et al. Mechanism of UV-assisted TiO2/reduced graphene oxide composites with variable photodegradation of methyl orange[J]. RSC Advances, 2015, 5(89): 72916-72922. [11] LONG W J, WEI J J, MA H Y, et al. Dynamic mechanical properties and microstructure of graphene oxide nanosheets reinforced cement composites[J]. Nanomaterials, 2017, 7(12): 407. [12] 何 威, 许吉航. 少层石墨烯对普通混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(5): 1477-1488. HE W, XU J H. Effect of few-layer graphene on properties of ordinary concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1477-1488 (in Chinese). [13] 陈 旭, 汉光昭, 裴玉胜, 等. 不同含量石墨烯对混凝土抗冻性能的影响[J]. 建筑施工, 2021, 43(8): 1659-1663. CHEN X, HAN G Z, PEI Y S, et al. Influence of different content of graphene on frost resistance of concrete[J]. Building Construction, 2021, 43(8): 1659-1663 (in Chinese). [14] 徐义洪, 范颖芳. 氧化石墨烯分散液对混凝土抗盐冻性能的影响[J]. 混凝土, 2022(2): 1-5. XU Y H, FAN Y F. Effects of graphene oxide dispersion on the salt-frost resistance of concrete[J]. Concrete, 2022(2): 1-5 (in Chinese). [15] 李相国, 任钊锋, 徐朋辉, 等. 氧化石墨烯复合PVA纤维增强水泥基材料的力学性能及耐久性研究[J]. 硅酸盐通报, 2018, 37(1): 245-250. LI X G, REN Z F, XU P H, et al. Research on mechanical properties and durability of graphene oxide composite PVA fiber reinforced cement-based material[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 245-250 (in Chinese). [16] JIANG W G, LI X G, LV Y, et al. Cement-based materials containing graphene oxide and polyvinyl alcohol fiber: mechanical properties, durability, and microstructure[J]. Nanomaterials, 2018, 8(9): 638. [17] YAO X P, SHAMSAEI E, CHEN S J, et al. Graphene oxide-coated poly(vinyl alcohol) fibers for enhanced fiber-reinforced cementitious composites[J]. Composites Part B: Engineering, 2019, 174: 107010. [18] WANG P, QIAO G, ZHANG Y, et al. Molecular dynamics simulation study on interfacial shear strength between calcium-silicate-hydrate and polymer fibers[J]. Construction and Building Materials, 2020, 257: 119557. [19] PELLENQ R J M, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16102-16107. [20] MANZANO H, MOEINI S, MARINELLI F, et al. Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties[J]. Journal of the American Chemical Society, 2012, 134(4): 2208-2215. [21] ALLINGTON R D, ATTWOOD D, HAMERTON I, et al. A model of the surface of oxidatively treated carbon fibre based on calculations of adsorption interactions with small molecules[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(9/10): 1283-1290. [22] JIAO S P, XU Z P. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9052-9059. [23] LU C, LU Z Y, LI Z J, et al. Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites[J]. Construction and Building Materials, 2016, 120: 457-464. [24] WANG P, QIAO G, HOU D S, et al. Functionalization enhancement interfacial bonding strength between graphene sheets and calcium silicate hydrate: insights from molecular dynamics simulation[J]. Construction and Building Materials, 2020, 261: 120500. [25] SHAHRIYARI R, KHOSRAVI A, AHMADZADEH A. Nanoscale simulation of Na-Montmorillonite hydrate under basin conditions, application of CLAYFF force field in parallel GCMC[J]. Molecular Physics, 2013, 111(20): 3156-3167. [26] KUNDALWAL S, KUMAR S. Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase[J]. Mechanics of Materials, 2016, 102: 117-131. [27] KUNDALWAL S, MEGUID S. Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites[J]. European Journal of Mechanics-A Solids, 2017, 64: 69-84. [28] HOU D S, YANG Q R, JIN Z Q, et al. Enhancing interfacial bonding between epoxy and CSH using graphene oxide: an atomistic investigation[J]. Applied Surface Science, 2021, 568: 150896. [29] ALLEN M P, TILDESLEY D J. Computer simulation of liquids[M]. New York: Oxford University Press, 2017. [30] LU Z, YU J, YAO J, et al. Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide[J]. Cement and Concrete Composites, 2020(112): 103676. [31] LI X Y, LU Z Y, CHUAH S, et al. Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste[J]. Composites Part A: Applied Science and Manufacturing, 2017, 100: 1-8. |