[1] BARKHOUSE D A R, GUNAWAN O, GOKMEN T, et al. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(1): 6-11. [2] 崔国楠,杨艳春,李月敏,等.溶液法制备铜锌锡硫硒薄膜太阳能电池的研究进展[J].硅酸盐学报,2021,49(3):483-494. CUI G N, YANG Y C, LI Y M, et al. Solution-processed Cu2ZnSn(S,Se)4 thin film solar cells[J]. Journal of the Chinese Ceramic Society, 2021, 49(3): 483-494 (in Chinese). [3] WINKLER M T, WANG W, GUNAWAN O, et al. Optical designs that improve the efficiency of Cu2ZnSn(Se,S)4 solar cells[J]. Energy & Environmental Science, 2014, 7(3): 1029-1036. [4] TODOROV T K, REUTER K B, MITZI D B. High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Advanced Materials, 2010, 22(20): E156-E159. [5] KI W, HILLHOUSE H W. Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent[J]. Advanced Energy Materials, 2011, 1(5): 732-735. [6] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465. [7] 黄晓梦,许佳雄.周期性前驱体的预硫化处理对Cu2ZnSnS4薄膜的影响[J].材料工程,2020,48(3):155-162. HUANG X M, XU J X. Effect of pre-sulfurization treatment of periodic precursor on Cu2ZnSnS4 thin film[J]. Journal of Materials Engineering, 2020, 48(3): 155-162 (in Chinese). [8] YANG K J, SON D H, SUNG S J, et al. A band-gap-graded CZTSSe solar cell with 12.3% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(26): 10151-10158. [9] HE M R, ZHANG X, HUANG J L, et al. High efficiency Cu2ZnSn(S,Se)4 solar cells with shallow LiZn acceptor defects enabled by solution-based Li post-deposition treatment[J]. Advanced Energy Materials, 2021, 11(13): 2003783. [10] QI Y F, LIU Y, KOU D X, et al. Enhancing grain growth for efficient solution-processed (Cu,Ag)2ZnSn(S,Se)4 solar cells based on acetate precursor[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 14213-14223. [11] 徐 信,王书荣,马 逊,等.硫化物靶与单质靶制备Cu2ZnSnS4薄膜的比较研究[J].无机材料学报,2019,34(5):529-534. XU X, WANG S R, MA X, et al. Comparative study of Cu2ZnSnS4 thin films prepared by chalcogenide and single targets[J]. Journal of Inorganic Materials, 2019, 34(5): 529-534 (in Chinese). [12] GONG Y C, ZHU Q, LI B Y, et al. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells[J]. Nature Energy, 2022, 7(10): 966-977. [13] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867. [14] RAKITIN V V, VARUSHKIN P E, XIN H, et al. The use of the liquid-phase method from DMSO solutions for the synthesis of CZTS thin film materials[J]. J. Connolly. EPJ Photovoltaics, 2019, 10: 6. [15] GONG Y C, ZHANG Y F, JEDLICKA E, et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V[J]. Science China Materials, 2021, 64(1): 52-60. [16] WERNER M, SUTTER-FELLA C M, HAGENDORFER H, et al. Cu2ZnSn(S,Se)4 solar cell absorbers processed from Na-containing solutions in DMSO[J]. Physica Status Solidi (a), 2015, 212(1): 116-120. [17] LUAN H M, YAO B, LI Y F, et al. Influencing mechanism of cationic ratios on efficiency of Cu2ZnSn(S,Se)4 solar cells fabricated with DMF-based solution approach[J]. Solar Energy Materials and Solar Cells, 2019, 195: 55-62. [18] LIU F, SHEN S, ZHOU F, et al. Kesterite Cu2ZnSnS4 thin film solar cells by a facile DMF-based solution coating process[J]. Journal of Materials Chemistry C, 2015, 3(41): 10783-10792. [19] COLLORD A D, HILLHOUSE H W. Germanium alloyed kesterite solar cells with low voltage deficits[J]. Chemistry of Materials, 2016, 28(7): 2067-2073. [20] SU Z H, LIANG G X, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Advanced Materials, 2020, 32(32): 2000121. [21] WU S H, WANG Y Y, HUANG K T, et al. Sulfur-rich sulfurization and solution stability of Cu2ZnSnS4 solar cells fabricated by 2-methoxyethanol-based process[J]. Journal of Alloys and Compounds, 2017, 703: 309-314. [22] TUAN D A, KE N H, THI KIEU LOAN P, et al. A method to improve the crystal quality of CZTSSe absorber layer[J]. Journal of Sol-Gel Science and Technology, 2018, 87(1):245-253. [23] STANCHIK A V, GREMENOK V F, JUSKENAS R, et al. Effects of selenization time and temperature on the growth of Cu2ZnSnSe4 thin films on a metal substrate for flexible solar cells[J]. Solar Energy, 2019, 178: 142-149. [24] PRABHU Y T, RAO K V, KUMAR V S S, et al. X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation[J]. World Journal of Nano Science and Engineering, 2014, 4: 21-28. [25] WEBER A, MAINZ R, SCHOCK H W. On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J]. Journal of Applied Physics, 2010, 107(1): 013516. [26] LEE Y S, GERSHON T, GUNAWAN O, et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Advanced Energy Materials, 2015, 5(7): 1401372. |