[1] 张健宇,苏春利,秦 怡,等.铁基有机框架材料对水中四环素的去除研究[J].环境科学与技术,2021,44(7):173-179. ZHANG J Y, SU C L, QIN Y, et al. Study on the effect and mechanism of MIL-53(Fe) preparation conditions on tetracycline removal in water[J]. Environmental Science & Technology, 2021, 44(7): 173-179 (in Chinese). [2] 陈 睿,汪 恂,朱 雷,等.g-C3N4/TiO2复合材料的制备及降解四环素的研究[J].环境科学与技术,2022,45(1):23-27. CHEN R, WANG X, ZHU L, et al. Preparation of g-C3N4/TiO2 composite materials and degradation of tetracycline[J]. Environmental Science & Technology, 2022, 45(1): 23-27 (in Chinese). [3] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. [4] WANG X T, REN Y Y, LI Y, et al. Fabrication of 1D/2D BiPO4/g-C3N4 heterostructured photocatalyst with enhanced photocatalytic efficiency for NO removal[J]. Chemosphere, 2022, 287: 132098. [5] QU X, CHEN C T, LIN J B, et al. Engineered defect-rich TiO2/g-C3N4 heterojunction: a visible light-driven photocatalyst for efficient degradation of phenolic wastewater[J]. Chemosphere, 2022, 286: 131696. [6] WEI X Q, WANG X, PU Y, et al. Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: characteristics, kinetics, models, and mechanisms[J]. Chemical Engineering Journal, 2021, 420: 127719. [7] JIN C Y, WANG M, LI Z L, et al. Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance[J]. Chemical Engineering Journal, 2020, 398: 125569. [8] HUANG W J, GAN L, YANG H T, et al. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition[J]. Advanced Functional Materials, 2017, 27(36): 1702448. [9] YUAN X Z, JIANG L B, LIANG J, et al. In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation[J]. Chemical Engineering Journal, 2019, 356: 371-381. [10] PARK J, LEE T H, KIM C, et al. Hydrothermally obtained type-II heterojunction nanostructures of In2S3/TiO2 for remarkably enhanced photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2021, 295: 120276. [11] CUI H, DONG S Y, WANG K K, et al. Synthesis of a novel Type-II In2S3/Bi2MoO6 heterojunction photocatalyst: excellent photocatalytic performance and degradation mechanism for Rhodamine B[J]. Separation and Purification Technology, 2021, 255: 117758. [12] ROSALES B A, WEI L, VELA J. Synthesis and mixing of complex halide perovskites by solvent-free solid-state methods[J]. Journal of Solid State Chemistry, 2019, 271: 206-215. [13] ZHAO J H, SHU Y, ZHANG P F. Solid-state CTAB-assisted synthesis of mesoporous Fe3O4 and Au@Fe3O4 by mechanochemistry[J]. Chinese Journal of Catalysis, 2019, 40(7): 1078-1084. [14] ZHAN W C, YANG S Z, ZHANG P F, et al. Incorporating rich mesoporosity into a ceria-based catalyst via mechanochemistry[J]. Chemistry of Materials, 2017, 29(17): 7323-7329. [15] XIAO W M, YANG S Z, ZHANG P F, et al. Facile synthesis of highly porous metal oxides by mechanochemical nanocasting[J]. Chemistry of Materials, 2018, 30(9): 2924-2929. [16] ZHANG M, LIU X Z, ZENG X, et al. Photocatalytic degradation of toluene by In2S3/g-C3N4 heterojunctions[J]. Chemical Physics Letters, 2020, 738: 100049. [17] 刘 雪,林樱楠,赵小燕,等.多孔氮化碳纳米材料光催化降解莠去津的性能及机理研究[J].环境化学,2021,40(12):3927-3935. LIU X, LIN Y N, ZHAO X Y, et al. Fabrication porous carbon nitride for photocatalytic degradation of atrazine: influencing parameters and mechanism[J]. Environmental Chemistry, 2021, 40(12): 3927-3935 (in Chinese). [18] GUO B R, LIU B, ZHANG X Q, et al. In2S3 nanosheets growing on sheet-like g-C3N4 as high-performance photocatalyst for H2 evolution under visible light[J]. International Journal of Energy Research, 2022, 46(7): 9138-9149. [19] XING C S, WU Z D, JIANG D L, et al. Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science, 2014, 433: 9-15. [20] 刘一凡,李明亮,罗 艳,等.3D-C3N4/Bi2WO6可见光催化剂的制备及其降解四环素研究[J].环境科学与技术,2020,43(7):84-93. LIU Y F, LI M L, LUO Y, et al. Preparation of 3D-C3N4/Bi2WO6 and its visible light photodegradation of tetracycline[J]. Environmental Science & Technology, 2020, 43(7): 84-93 (in Chinese). [21] 万建新,任学昌,刘宏伟,等.ZnO/g-C3N4复合型光催化剂的制备及其光催化性能[J].环境化学,2018,37(4):792-797. WAN J X, REN X C, LIU H W, et al. Preparation and photocatalytic properties of ZnO/g-C3N4 composite photocatalysts[J]. Environmental Chemistry, 2018, 37(4): 792-797 (in Chinese). [22] BAO J, BAI W D, WU M B, et al. Template-mediated copper doped porous g-C3N4 for efficient photodegradation of antibiotic contaminants[J]. Chemosphere, 2022, 293: 133607. [23] KOKANE S B, SASIKALA R, PHASE D M, et al. In2S3 nanoparticles dispersed on g-C3N4 nanosheets: role of heterojunctions in photoinduced charge transfer and photoelectrochemical and photocatalytic performance[J]. Journal of Materials Science, 2017, 52(12): 7077-7090. [24] 汪旭乐.g-C3N4基复合光催化剂的制备及光催化降解四环素性能研究[D].合肥:安徽大学,2021. WANG X L. Preparation and photo-degradation of tetracycline by g-C3N4 based composite photo-catalyst[D]. Hefei: Anhui University, 2021 (in Chinese). [25] TANG J L, WANG J J, TANG L, et al. Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation[J]. Chemical Engineering Journal, 2022, 430: 132669. |