[1] MEYER C. The greening of the concrete industry[J]. Cement and Concrete Composites, 2009, 31(8): 601-605. [2] 陈姣姣,蔡 新.水工混凝土损伤研究综述[J].混凝土,2016(10):139-142. CHEN J J, CAI X. Review of concrete damage of hydraulic structure[J]. Concrete, 2016(10): 139-142 (in Chinese). [3] LEI B, WANG N, XU P, et al. New crack detection method for bridge inspection using UAV incorporating image processing[J]. Journal of aerospace engineering, 2018, 31(5):4018058.1-4018058.13. [4] SAGAR R V. Acoustic emission characteristics of reinforced concrete beams with varying percentage of tension steel reinforcement under flexural loading[J]. Case Studies in Construction Materials, 2017, 6: 162-176. [5] LIU Y F, CHO S, SPENCER B, et al. Concrete crack assessment using digital image processing and 3D scene reconstruction[J]. Journal of Computing in Civil Engineering, 2016, 30(1):04014124. [6] ROBERTS R, CORCORAN K, SCHUTZ A. Insulated concrete form void detection using ground penetrating radar[J]. Structural Faults and Repair Conference, 2010, 17: 1-12. [7] JANKUŮ M, CIKRLE P, GROEK J, et al. Comparison of infrared thermography, ground-penetrating radar and ultrasonic pulse echo for detecting delaminations in concrete bridges[J]. Construction and Building Materials, 2019, 225: 1098-1111. [8] CASSIDY N J, EDDIES R, DODS S. Void detection beneath reinforced concrete sections: the practical application of ground-penetrating radar and ultrasonic techniques[J]. Journal of Applied Geophysics, 2011, 74(4): 263-276. [9] 朱 珊,周文杰,李晓莹.混凝土健康监测技术综述[J].建筑结构,2022,52(s1):2248-2252. ZHU S, ZHOU W J, LI X Y. Review of concrete health monitoring technology[J]. Building Structure, 2022, 52(s1): 2248-2252 (in Chinese). [10] COTIČ P, KOLARIČ D, BOSILJKOV V B, et al. Determination of the applicability and limits of void and delamination detection in concrete structures using infrared thermography[J]. NDT & E International, 2015, 74: 87-93. [11] XIE J, WU C W, GAO L M, et al. Detection of internal defects in CFRP strengthened steel structures using eddy current pulsed thermography[J]. Construction and Building Materials, 2021, 282: 122642. [12] 刘红玲,苗剑魁.大型土木结构健康监测系统[J].建筑结构,2013,43(s2):337-340. LIU H L, MIAO J K. Health monitoring system for large civil structures[J]. Building Structure, 2013, 43(s2): 337-340 (in Chinese). [13] 孙 威,阎 石,焦 莉,等.基于压电波动法的混凝土裂缝损伤监测技术[J].工程力学,2013,30(s1):206-211. SUN W, YAN S, JIAO L, et al. Monitoring technology for crack damage of concrete structure based on piezoelectric wave method[J]. Engineering Mechanics, 2013, 30(s1): 206-211 (in Chinese). [14] LU Y Y, MA H Y, LI Z J. Ultrasonic monitoring of the early-age hydration of mineral admixtures incorporated concrete using cement-based piezoelectric composite sensors[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(3): 280-291. [15] LI L, XU D Y, HUANG S F, et al. Investigation of piezoelectric composite transducer in ultrasonic monitoring of cement hydration[J]. Advances in Cement Research, 2015, 27(7): 424-432. [16] ERVIN B L, REIS H. Longitudinal guided waves for monitoring corrosion in reinforced mortar[J]. Measurement Science and Technology, 2008, 19(5): 055702. [17] HU B, KUNDU T, GRILL W, et al. Embedded piezoelectric sensors for health monitoring of concrete structures[J]. ACI Materials Journal, 2013, 110(2): 149-158. [18] LIAO W I, WANG J X, SONG G, et al. Structural health monitoring of concrete columns subjected to seismic excitations using piezoceramic-based sensors[J]. Smart Materials and Structures, 2011, 20(12): 125015. [19] LIU T J, HUANG Y C, ZOU D J, et al. Exploratory study on water seepage monitoring of concrete structures using piezoceramic based smart aggregates[J]. Smart Materials and Structures, 2013, 22(6): 065002. [20] SONG G B, GU H C, MO Y L. Smart aggregates: multi-functional sensors for concrete structures: a tutorial and a review[J]. Smart Materials and Structures, 2008, 17(3): 033001. [21] HOU S, ZHANG H B, OU J P. A PZT-based smart aggregate for compressive seismic stress monitoring[J]. Smart Materials and Structures, 2012, 21(10): 105035. [22] MARKOVIĆ N, NESTOROVIĆ T, STOJIĆ D, et al. Hybrid approach for two dimensional damage localization using piezoelectric smart aggregates[J]. Mechanics Research Communications, 2017, 85: 69-75. [23] XIONG Y L, ZHANG S Q, CHEN C, et al. Experiments and finite element analysis for detecting the embedded defects in concrete using PZT transducers[J]. Construction and Building Materials, 2021, 292: 123318. [24] 张 浩,李俊杰,康 飞.基于压电智能骨料的混凝土梁裂缝损伤监测研究[J].振动与冲击,2021,40(21):215-222. ZHANG H, LI J J, KANG F. Crack damage monitoring of concrete beam based on piezoelectric intelligent aggregate[J]. Journal of Vibration and Shock, 2021, 40(21): 215-222 (in Chinese). [25] GAO W H, HUO L S, LI H N, et al. An embedded tubular PZT transducer based damage imaging method for two-dimensional concrete structures[J]. IEEE Access, 2018, 6: 30100-30109. |