[1] GHARI H S, JALALI-ARANI A. Nanocomposites based on natural rubber, organoclay and nano-calcium carbonate: study on the structure, cure behavior, static and dynamic-mechanical properties[J]. Applied Clay Science, 2016, 119: 348-357. [2] 王 芬,余军霞,肖春桥,等.CO2碳化法制备微米级球霰石型食品碳酸钙的研究[J].硅酸盐通报,2017,36(1):43-50+56. WANG F, YU J X, XIAO C Q, et al. Preparation of micro-size food-grade vaterite CaCO3 by CO2 carbonization method[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(1): 43-50+56 (in Chinese). [3] TAO H, HE Y Y, ZHAO X. Preparation and characterization of calcium carbonate-titanium dioxide core-shell (CaCO3@TiO2) nanoparticles and application in the papermaking industry[J]. Powder Technology, 2015, 283: 308-314. [4] 王宇轩,徐 颖,王东平,等.球霰石的性质及其应用进展[J].安徽理工大学学报(自然科学版),2017,37(2):76-80. WANG Y X, XU Y, WANG D P, et al. Properties and applications of vaterite[J]. Journal of Anhui University of Science and Technology (Natural Science), 2017, 37(2): 76-80 (in Chinese). [5] FUCHIGAMI K, TAGUCHI Y, TANAKA M. Synthesis of calcium carbonate vaterite crystals and their effect on stabilization of suspension polymerization of MMA[J]. Advanced Powder Technology, 2009, 20(1): 74-79. [6] TRUSHINA D B, SULYANOV S N, BUKREEVA T V, et al. Size control and structure features of spherical calcium carbonate particles[J]. Crystallography Reports, 2015, 60(4): 570-577. [7] RAUTARAY D, SAINKAR S R, SASTRY M. Thermally evaporated aerosol OT thin films as templates for the room temperature synthesis of aragonite crystals[J]. Chemistry of Materials, 2003, 15(14): 2809-2814. [8] SCHENK A S, ALBARRACIN E J, KIM Y Y, et al. Confinement stabilises single crystal vaterite rods[J]. Chemical Communications (Cambridge, England), 2014, 50(36): 4729-4732. [9] LI Q, DING Y, LI F Q, et al. Solvothermal growth of vaterite in the presence of ethylene glycol, 1, 2-propanediol and glycerin[J]. Journal of Crystal Growth, 2002, 236(1/2/3): 357-362. [10] FLATEN E M, SEIERSTEN M, ANDREASSEN J P. Polymorphism and morphology of calcium carbonate precipitated in mixed solvents of ethylene glycol and water[J]. Journal of Crystal Growth, 2009, 311(13): 3533-3538. [11] DUPONT L, PORTEMER F, FIGLARZ T L M. Synthesis and study of a well crystallized CaCO3 vaterite showing a new habitus[J]. Journal of Materials Chemistry, 1997, 7(5): 797-800. [12] SHAIKH A M. A new crystal growth form of vaterite, CaCO3[J]. Journal of Applied Crystallography, 1990, 23(4): 263-265. [13] MUGNAIOLI D E, ANDRUSENKO I, SCHÜLER T, et al. Ab Initio structure determination of vaterite by automated electron diffraction[J]. Angewandte Chemie International Edition, 2012, 51(28): 7041-7045. [14] KONOPACKA-ŁYSKAWA D. Synthesis methods and favorable conditions for spherical vaterite precipitation: a review[J]. Crystals, 2019, 9(4): 223. [15] CHRISTY A G. A review of the structures of vaterite: the impossible, the possible, and the likely[J]. Crystal Growth & Design, 2017, 17(6): 3567-3578. [16] EVČÍ K R, AEK P, VIANI A. Physical and nanomechanical properties of the synthetic anhydrous crystalline CaCO3 polymorphs: vaterite, aragonite and calcite[J]. Journal of Materials Science, 2018, 53(6): 4022-4033. [17] ZHAO D Z, JIANG J H, XU J N, et al. Synthesis of template-free hollow vaterite CaCO3 microspheres in the H2O/EG system[J]. Materials Letters, 2013, 104: 28-30. [18] SVENSKAYA Y, PARAKHONSKIY B, HAASE A, et al. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer[J]. Biophysical Chemistry, 2013, 182: 11-15. [19] PARAKHONSKIY D B V, YASHCHENOK D A M, DONATAN D S, et al. Macromolecule loading into spherical, elliptical, star-like and cubic calcium carbonate carriers[J]. ChemPhysChem, 2014, 15(13): 2817-2822. [20] 刘 佳.球形磷酸钙/碳酸钙复合药物载体的制备及其性能研究[D].杭州:浙江理工大学,2014. LIU J. Preparation and properties of spherical calcium phosphate/calcium carbonate composites used as drug carriers[D]. Hangzhou: Zhejiang Sci-Tech University, 2014 (in Chinese). [21] MAEDA H, MAQUET V, CHEN Q Z, et al. Bioactive coatings by vaterite deposition on polymer substrates of different composition and morphology[J]. Materials Science and Engineering: C, 2007, 27(4): 741-745. [22] WEI H, SHEN Q, ZHAO Y, et al. Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite[J]. Journal of Crystal Growth, 2003, 250(3/4): 516-524. [23] POLITI Y, ARAD T, KLEIN E, et al. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase[J]. Science, 2004, 306(5699): 1161-1164. [24] YANG M, JIN X Q, HUANG Q. Facile synthesis of vaterite core-shell microspheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374(1/2/3): 102-107. [25] ANDREASSEN J P, FLATEN E M, BECK R, et al. Investigations of spherulitic growth in industrial crystallization[J]. Chemical Engineering Research and Design, 2010, 88(9): 1163-1168. [26] 陈传杰,肖博文,尚 梦,等.油酸在CaCl2和Ca(OH)2反应体系中对CaCO3晶型和形貌的调控[J].硅酸盐通报,2018,37(8):2400-2404. CHEN C J, XIAO B W, SHANG M, et al. Regulation of oleic acid on the polymorphs and the morphologies of CaCO3 during CaCl2 and Ca(OH)2 reaction system[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2400-2404 (in Chinese). [27] LAI Y H, CHEN L S, BAO W C, et al. Glycine-mediated, selective preparation of monodisperse spherical vaterite calcium carbonate in various reaction systems[J]. Crystal Growth & Design, 2015, 15(3): 1194-1200. [28] DING Y, LIU Y Y, REN Y Y, et al. Controllable synthesis of all the anhydrous CaCO3 polymorphs with various morphologies in CaCl2-NH3-CO2 aqueous system[J]. Powder Technology, 2018, 333: 410-420. [29] MASSI M, OGDEN M I, JONES F. Investigating vaterite phase stabilisation by a tetrazole molecule during calcium carbonate crystallisation[J]. Journal of Crystal Growth, 2012, 351(1): 107-114. [30] HOU W T, FENG Q L. Morphology and formation mechanism of vaterite particles grown in glycine-containing aqueous solutions[J]. Materials Science and Engineering: C, 2006, 26(4): 644-647. [31] ZHANG Q, REN L Y, SHENG Y H, et al. Control of morphologies and polymorphs of CaCO3 via multi-additives system[J]. Materials Chemistry and Physics, 2010, 122(1): 156-163. [32] 胡艳丽,马拥军,罗庆平,等.L-天冬氨酸诱导叠层碳酸钙微晶的形成[J].人工晶体学报,2010,39(3):802-806+812. HU Y L, MA Y J, LUO Q P, et al. Laminated structure control of CaCO3 micro-crystal by L-aspartic acid[J]. Journal of Synthetic Crystals, 2010, 39(3): 802-806+812 (in Chinese). [33] MORI Y, ENOMAE T, ISOGAI A. Preparation of pure vaterite by simple mechanical mixing of two aqueous salt solutions[J]. Materials Science and Engineering: C, 2009, 29(4): 1409-1414. [34] PÍREZ-VILLAREJO L, TAKABAIT F, MAHTOUT L, et al. Synthesis of vaterite CaCO3 as submicron and nanosized particles using inorganic precursors and sucrose in aqueous medium[J]. Ceramics International, 2018, 44(5): 5291-5296. [35] JIANG J X, WU Y, CHEN C J, et al. A novel route to prepare the metastable vaterite phase of CaCO3 from CaCl2 ethanol solution and Na2CO3 aqueous solution[J]. Advanced Powder Technology, 2018, 29(10): 2416-2422. [36] SVENSKAYA Y I, FATTAH H, INOZEMTSEVA O A, et al. Key parameters for size- and shape-controlled synthesis of vaterite particles[J]. Crystal Growth & Design, 2018, 18(1): 331-337. [37] 张 枝.不同形貌轻质碳酸钙的制备及其工艺条件研究[D].合肥:合肥工业大学,2015. ZHANG Z. Study on the preparation of light calcium carbonate with different morphologies and its process conditions[D]. Hefei: Hefei University of Technology, 2015 (in Chinese). [38] MENG L Y, WANG B, MA M G, et al. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials[J]. Materials Today Chemistry, 2016, 1/2: 63-83. [39] 李 强.不同形貌纳米碳酸钙的制备、改性及应用研究[D].合肥:合肥工业大学,2014. LI Q. Study on the preparation, modification and application of calcium carbonate with different morphologies[D]. Hefei: Hefei University of Technology, 2014 (in Chinese). [40] GANGULI A K, AHMAD T, VAIDYA S, et al. Microemulsion route to the synthesis of nanoparticles[J]. Pure and Applied Chemistry, 2008, 80(11): 2451-2477. [41] KANG S H, HIRASAWA I, KIM W S, et al. Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT[J]. Journal of Colloid and Interface Science, 2005, 288(2): 496-502. [42] HUANG J H, MAO Z F, LUO M F. Effect of anionic surfactant on vaterite CaCO3[J]. Materials Research Bulletin, 2007, 42(12): 2184-2191. [43] WANG C Y, PIAO C, ZHAI X L, et al. Synthesis and character of super-hydrophobic CaCO3 powder in situ[J]. Powder Technology, 2010, 200(1/2): 84-86. [44] YANG H, WANG Y F, LIANG T X, et al. Hierarchical porous calcium carbonate microspheres as drug delivery vector[J]. Progress in Natural Science: Materials International, 2017, 27(6): 674-677. [45] 夏宏宇,张 群,王 刚,等.球形和橄榄形球霰石的简易制备研究[J].人工晶体学报,2015,44(6):1701-1706. XIA H Y, ZHANG Q, WANG G, et al. Study on facile fabrication of spherical and olivary vaterite[J]. Journal of Synthetic Crystals, 2015, 44(6): 1701-1706 (in Chinese). [46] 李 钊.仿生矿化合成碳酸钙微结构及其抑菌效应的研究[D].武汉:华中农业大学,2013. LI Z. Study on fabrication of calcium carbonate microstructures through biomimetic mineralization mechanics and its bacteriostatic efficacy[D]. Wuhan: Huazhong Agricultural University, 2013 (in Chinese). [47] NJEGIĆ-DŽAKULA B, FALINI G, BREČEVIĆ L, et al. Effects of initial supersaturation on spontaneous precipitation of calcium carbonate in the presence of charged poly-l-amino acids[J]. Journal of Colloid and Interface Science, 2010, 343(2): 553-563. [48] GUO Y M, WANG F F, ZHANG J, et al. Biomimetic synthesis of calcium carbonate with different morphologies under the direction of different amino acids[J]. Research on Chemical Intermediates, 2013, 39(6): 2407-2415. [49] SHIVKUMARA C, SINGH P, GUPTA A, et al. Synthesis of vaterite CaCO3 by direct precipitation using glycine and L-alanine as directing agents[J]. Materials Research Bulletin, 2006, 41(8): 1455-1460. [50] 徐基贵,朱 军,史洪伟.L-赖氨酸对CaCO3晶型和形状调控[J].合肥工业大学学报(自然科学版),2011,34(6):924-926. XU J G, ZHU J, SHI H W. Shape and morphology of CaCO3 crystal controlled by L-lysine[J]. Journal of Hefei University of Technology (Natural Science), 2011, 34(6): 924-926 (in Chinese). [51] LIU Y X, CHEN Y P, HUANG X C, et al. Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch[J]. Materials Science and Engineering: C, 2017, 79: 457-464. [52] GHIZELLAOUI S, EUVRARD M. Assessing the effect of zinc on the crystallization of calcium carbonate[J]. Desalination, 2008, 220(1/2/3): 394-402. [53] KATSIFARAS A, SPANOS N. Effect of inorganic phosphate ions on the spontaneous precipitation of vaterite and on the transformation of vaterite to calcite[J]. Journal of Crystal Growth, 1999, 204: 183-190. [54] JIANG J X, YE J Z, ZHANG G W, et al. Polymorph and morphology control of CaCO3 via temperature and PEG during the decomposition of Ca(HCO3)2[J]. Journal of the American Ceramic Society, 2012, 95(12): 3735-3738. [55] JIANG J X, ZHANG Y, XU D D, et al. Can agitation determine the polymorphs of calcium carbonate during the decomposition of calcium bicarbonate?[J]. CrystEngComm, 2014, 16(24): 5221-5226. [56] ZENG H Y, YAN Z L, JIAO M R, et al. A novel method for preparing calcium carbonate particles: thermal decomposition from calcium hydrogen carbonate solution[J]. Key Engineering Materials, 2016, 697: 113-118. [57] WALSH D, LEBEAU B, MANN S. Morphosynthesis of calcium carbonate (vaterite) microsponges[J]. Advanced Materials, 1999, 11(4): 324-328. [58] EVČÍK R, PÉREZ-ESTÉBANEZ M, VIANI A, et al. Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives[J]. Powder Technology, 2015, 284: 265-271. [59] ORAL Ç M, ERCAN B. Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles[J]. Powder Technology, 2018, 339: 781-788.[60] SUN J, WANG L S, ZHAO D F. Polymorph and morphology of CaCO3 in relation to precipitation conditions in a bubbling system[J]. Chinese Journal of Chemical Engineering, 2017, 25(9): 1335-1342. [61] HAN Y S, HADIKO G, FUJI M, et al. Effect of flow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method[J]. Journal of Crystal Growth, 2005, 276(3/4): 541-548. [62] SVENSKAYA Y I, FATTAH H, ZAKHAREVICH A M, et al. Ultrasonically assisted fabrication of vaterite submicron-sized carriers[J]. Advanced Powder Technology, 2016, 27(2): 618-624. [63] OTS P, BENNING L G, RODRIGUEZ-BLANCO J D, et al. Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC)[J]. Crystal Growth & Design, 2012, 12(7): 3806-3814. [64] KITAMURA M. Strategy for control of crystallization of polymorphs[J]. CrystEngComm, 2009, 11(6): 949. [65] SAULAT H, CAO M L, KHAN M M, et al. Preparation and applications of calcium carbonate whisker with a special focus on construction materials[J]. Construction and Building Materials, 2020, 236: 117613. [66] RODRIGUEZ-NAVARRO C, JIMENEZ-LOPEZ C, RODRIGUEZ-NAVARRO A, et al. Bacterially mediated mineralization of vaterite[J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1197-1213. [67] SAND K, RODRÍGUEZ-BLANCO J, MAKOVICKY E, et al. Crystallization of CaCO3 in water-alcohol mixtures: spherulitic growth, polymorph stabilization, and morphology change[J]. Crystal Growth & Design, 2012, 12: 842-853. [68] PARAKHONSKIY D B V, HAASE D A, ANTOLINI P R. Sub-micrometer vaterite containers: synthesis, substance loading, and release[J]. Angewandte Chemie International Edition, 2012, 51(5): 1195-1197. |