[1] ZHANG B, DU Y N, LIU H L, et al. Experimental study on high-speed milling of SiCf/SiC composites with PCD and CVD diamond tools[J]. Materials (Basel, Switzerland), 2021, 14(13): 3470. [2] SHA J J, WANG S H, DAI J X, et al. High-temperature mechanical properties and their influence mechanisms of ZrC-modified C-SiC ceramic matrix composites up to 1 600 ℃[J]. Materials (Basel, Switzerland), 2020, 13(7): 1581. [3] ZAPATA-SOLVAS E, GÓMEZ-GARCÍA D, DOMÍNGUEZ-RODRÍGUEZ A. Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites[J]. Journal of the European Ceramic Society, 2012, 32(12): 3001-3020. [4] LI L B. Modeling temperature-dependent vibration damping in C/SiC fiber-reinforced ceramic-matrix composites[J]. Materials (Basel, Switzerland), 2020, 13(7): 1633. [5] HAN J, WANG Y F, LIU R J, et al. Theoretical and experimental investigation of xenotime-type rare earth phosphate REPO4, (RE=Lu, Yb, Er, Y and Sc) for potential environmental barrier coating applications[J]. Scientific Reports, 2020, 10: 13681. [6] TIAN Z L, ZHENG L Y, HU W P, et al. Tunable properties of (HoxY1-x)2SiO5 as damage self-monitoring environmental/thermal barrier coating candidates[J]. Scientific Reports, 2019, 9: 415. [7] NGUYEN S T, NAKAYAMA T, SUEMATSU H, et al. Low thermal conductivity Y2Ti2O7 as a candidate material for thermal/environmental barrier coatings[J]. Ceramics International, 2016, 42(9): 11314-11323. [8] CHEN H F, ZHANG C, LIU Y C, et al. Recent progress in thermal/environmental barrier coatings and their corrosion resistance[J]. Rare Metals, 2020, 39(5): 498-512. [9] LIANG P P, DONG S J, ZENG J Y, et al. La2Hf2O7 ceramics as potential top-coat materials for thermal/environmental barrier coatings[J]. Ceramics International, 2019, 45(17): 22432-22436. [10] YU Y C, POERSCHKE D L. Design of thermal and environmental barrier coatings for Nb-based alloys for high-temperature operation[J]. Surface and Coatings Technology, 2022, 431: 128007. [11] CHEN P J, XIAO P, LI Z, et al. Thermal cycling behavior of La2Zr2O7/Yb2Si2O7/SiC coated PIP Cf/SiC composites under burner rig tests[J]. Journal of the European Ceramic Society, 2021, 41(7): 4058-4066. [12] LI G, QIN L, CAO X Q, et al. Water vapor corrosion resistance and failure mechanism of SiCf/SiC composites completely coated with plasma sprayed tri-layer EBCs[J]. Ceramics International, 2022, 48(5): 7082-7092. [13] LUO Y X, SUN L C, WANG J M, et al. Material-genome perspective towards tunable thermal expansion of rare-earth di-silicates[J]. Journal of the European Ceramic Society, 2018, 38(10): 3547-3554. [14] CHEN X L, SUN Y W, HU J K, et al. Thermal cycling failure of the multilayer thermal barrier coatings based on LaMgAl11O19/YSZ[J]. Journal of the European Ceramic Society, 2020, 40(4): 1424-1432. [15] SUN J B, HUI Y, JIANG J N, et al. Crystallization mechanism of plasma-sprayed LaMgAl11O19 coating[J]. Applied Surface Science, 2020, 504: 144509. [16] OGAWA T, OTANI N, YOKOI T, et al. Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure[J]. Physical Chemistry Chemical Physics, 2018, 20(24): 16518-16527. [17] ZHAO C, WANG F, SUN Y J, et al. Synthesis and characterization of β-Yb2Si2O7 powders[J]. Ceramics International, 2013, 39(5): 5805-5811. [18] TURCER L R, KRAUSE A R, GARCES H F, et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part Ⅱ, β-Yb2Si2O7 and β-Sc2Si2O7[J]. Journal of the European Ceramic Society, 2018, 38(11): 3905-3913. [19] TURCER L R, KRAUSE A R, GARCES H F, et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part I, YAlO3 and γ-Y2Si2O7[J]. Journal of the European Ceramic Society, 2018, 38(11): 3905-3913. [20] GOLDEN R A, MUELLER K, OPILA E J. Thermochemical stability of Y2Si2O7 in high-temperature water vapor[J]. Journal of the American Ceramic Society, 2020, 103(8): 4517-4535. [21] FAN X Y, SUN R J, DONG J, et al. Effects of sintering additives on hot corrosion behavior of γ-Y2Si2O7 ceramics in Na2SO4+V2O5 molten salt[J]. Journal of the European Ceramic Society, 2021, 41(1): 517-525. [22] TURCER L R, PADTURE N P. Rare-earth pyrosilicate solid-solution environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass[J]. Journal of Materials Research, 2020, 35(17): 2373-2384. [23] GARCIA E, GARCES H F, TURCER L R, et al. Crystallization behavior of air-plasma-sprayed ytterbium-silicate-based environmental barrier coatings[J]. Journal of the European Ceramic Society, 2021, 41(6): 3696-3705. [24] DONG S J, LÜ K Y, WANG Y H, et al. High-temperature corrosion of HfSiO4 environmental barrier coatings exposed to water vapor/oxygen atmosphere and molten calcium magnesium aluminosilicate[J]. Corrosion Science, 2022, 197: 110081. [25] XU L, SU L, WANG H J, et al. Tuning stoichiometry of high-entropy oxides for tailorable thermal expansion coefficients and low thermal conductivity[J]. Journal of the American Ceramic Society, 2022, 105(2): 1548-1557. [26] RICHARDS B T, BEGLEY M R, WADLEY H N G. Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor[J]. Journal of the American Ceramic Society, 2015, 98(12): 4066-4075. [27] WANG Y W, NIU Y R, ZHONG X, et al. Water vapor corrosion behaviors of plasma sprayed ytterbium silicate coatings[J]. Ceramics International, 2020, 46(18): 28237-28243. [28] COURCOT E, REBILLAT F, TEYSSANDIER F, et al. Stability of rare earth oxides in a moist environment at elevated temperatures: experimental and thermodynamic studies: part II: comparison of the rare earth oxides[J]. Journal of the European Ceramic Society, 2010, 30(9): 1911-1917. |