[1] YU Y, WANG X S, YAO X. Dielectric properties of Ba1-xSrxTiO3 ceramics prepared by microwave sintering[J]. Ceramics International, 2013, 39: S335-S339. [2] HUANG Y H, WU Y J, LI J, et al. Enhanced energy storage properties of Barium strontium titanate ceramics prepared by sol-gel method and spark plasma sintering[J]. Journal of Alloys and Compounds, 2017, 701: 439-446. [3] YU M, GRASSO S, MCKINNON R, et al. Review of flash sintering: materials, mechanisms and modelling[J]. Advances in Applied Ceramics, 2017, 116(1): 24-60. [4] ANDREWS J, BUTTON D, REANEY I M. Advances in cold sintering: improving energy consumption and unlocking new potential in component manufacturing[J]. Johnson Matthey Technology Review, 2020, 64(2): 219-232. [5] GRASSO S, BIESUZ M, ZOLI L, et al. A review of cold sintering processes[J]. Advances in Applied Ceramics, 2020, 119(3): 115-143. [6] GUO J, FLOYD R, LOWUM S, et al. Cold sintering: progress, challenges, and future opportunities[J]. Annual Review of Materials Research, 2019, 49: 275-295. [7] GUO J, GUO H Z, BAKER A L, et al. Cold sintering: a paradigm shift for processing and integration of ceramics[J]. Angewandte Chemie International Edition, 2016, 55(38): 11457-11461. [8] SADA T K, TSUJI K, NDAYISHIMIYE A, et al. High permittivity BaTiO3 and BaTiO3-polymer nanocomposites enabled by cold sintering with a new transient chemistry: Ba(OH)2·8H2O[J]. Journal of the European Ceramic Society, 2021, 41(1): 409-417. [9] JING Y, LUO N N, WU S H, et al. Remarkably improved electrical conductivity of ZnO ceramics by cold sintering and post-heat-treatment[J]. Ceramics International, 2018, 44(16): 20570-20574. [10] WANG D X, TSUJI K, RANDALL C A, et al. Model for the cold sintering of lead zirconate titanate ceramic composites[J]. Journal of the American Ceramic Society, 2020, 103(9): 4894-4902. [11] SEO J H, FAN Z M, NAKAYA H, et al. Cold sintering, enabling a route to co-sinter an all-solid-state lithium-ion battery[J]. Japanese Journal of Applied Physics, 2021, 60(3): 037001. [12] CHEN M H, YIN J H, FENG Y, et al. Effect of content on dielectric performance of barium titanate/polyimide films[C]//Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. August 12-14, 2011, Harbin, China. IEEE, 2011: 2033-2036. [13] GUO J, ZHAO X T, HERISSON DE BEAUVOIR T, et al. Recent progress in applications of the cold sintering process for ceramic-polymer composites[J]. Advanced Functional Materials, 2018, 28(39): 1801724. [14] ZHANG Q Q, GAO F, HU G X, et al. Characterization and dielectric properties of modified Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites with high dielectric tunability[J]. Composites Science and Technology, 2015, 118: 94-100. [15] GUO Y T, MENG N, ZHANG Y M, et al. Characterization and performance of plate-like Ba0.6Sr0.4TiO3/poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) composites with high permittivity and low loss[J]. Polymer, 2020, 203: 122777. [16] GUO Y T, ZHANG K N, MENG N, et al. Microstructure and dielectric properties of sub-micron hollow sphere (Ba0.6Sr0.4)TiO3/PVDF composites[J]. IET Nanodielectrics, 2019, 2(4): 135-141. [17] XIA W M, XU Z, WEN F, et al. Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites[J]. Ceramics International, 2012, 38(2): 1071-1075. [18] GUPTA P, KUMAR A, TOMAR M, et al. Enhanced dielectric properties and suppressed leakage current density of PVDF composites flexible film through small loading of submicron Ba0.7Sr0.3TiO3 crystallites[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(16): 11806-11812. [19] SADA T K, TSUJI K, NDAYISHIMIYE A, et al. Enhanced high permittivity BaTiO3-polymer nanocomposites from the cold sintering process[J]. Journal of Applied Physics, 2020, 128(8): 084103. |