[1] 林芳兵,蒋金华,陈南梁.天线罩用透波材料的研究进展[J].纺织导报,2017(8):70-74. LIN F B, JIANG J H, CHEN N L. Current research progress in wave transmitting materials for radome[J]. China Textile Leader, 2017(8): 70-74 (in Chinese). [2] 李 斌.氮化物陶瓷基耐烧蚀、透波复合材料及其天线罩的制备与性能研究[D].长沙:国防科学技术大学,2007. LI B. Preparation and performance of ablation resistant, wave-transparent nitride ceramic matrix composites and radome[D]. Changsha: National University of Defense Technology, 2007 (in Chinese). [3] 裴晓园,陈 利,李嘉禄,等.天线罩材料的研究进展[J].纺织学报,2016,37(12):153-159. PEI X Y, CHEN L, LI J L, et al. Research progress in radome material[J]. Journal of Textile Research, 2016, 37(12): 153-159 (in Chinese). [4] 杨洁颖,吕 毅,张春波,等.飞行器用透波材料及天线罩技术研究进展[J].宇航材料工艺,2015,45(4):6-9. YANG J Y, LV Y, ZHANG C B, et al. Improvements of microwave transparent composites and aircraft radome[J]. Aerospace Materials & Technology, 2015, 45(4): 6-9 (in Chinese). [5] 吴甲民,陈敬炎,陈安南,等.陶瓷零件增材制造技术及在航空航天领域的潜在应用[J].航空制造技术,2017,60(10):40-49+58. WU J M, CHEN J Y, CHEN A N, et al. Additive manufacturing of ceramic components and its potential application in aerospace field[J]. Aeronautical Manufacturing Technology, 2017, 60(10): 40-49+58 (in Chinese). [6] 伍海东,刘 伟,伍尚华,等.陶瓷增材制造技术研究进展[J].陶瓷学报,2017,38(4):451-459. WU H D, LIU W, WU S H, et al. Research progress of additive manufacturing technology for ceramic materials[J]. Journal of Ceramics, 2017, 38(4): 451-459 (in Chinese). [7] 黄淼俊,伍海东,黄容基,等.陶瓷增材制造(3D打印)技术研究进展[J].现代技术陶瓷,2017,38(4):248-266. HUANG M J, WU H D, HUANG R J, et al. A review on ceramic additive manufacturing(3D printing)[J]. Advanced Ceramics, 2017, 38(4): 248-266 (in Chinese). [8] 顾 玥,王 功,段文艳,等.陶瓷光固化成型技术的应用与展望[J].硅酸盐学报,2021,49(5):867-877. GU Y, WANG G, DUAN W Y, et al. Application and prospect of photopolymerization technologies for ceramics[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 867-877 (in Chinese). [9] LICCIULLI A, CORCIONE C E, GRECO A, et al. Laser stereolithography of ZrO2 toughened Al2O3[J]. Journal of the European Ceramic Society, 2005, 25(9): 1581-1589. [10] LIU X Y, ZOU B, XING H Y, et al. The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing[J]. Ceramics International, 2020, 46(1): 937-944. [11] ZHOU W Z, LI D C, WANG H. A novel aqueous ceramic suspension for ceramic stereolithography[J]. Rapid Prototyping Journal, 2010, 16(1): 29-35. [12] LI S J, BAO C G, MA H Q, et al. Fabrication and properties of diatomite ceramics with hierarchical pores based on direct stereolithography[J]. Ceramics International, 2022, 48(5): 6266-6276. [13] 黄容基.基于光固化成型的氮化硅陶瓷制备与工艺研究[D].广州:广东工业大学,2019. HUANG R J. Fabrication of Si3N4 ceramics based on DLP-stereolithography method[D]. Guangzhou: Guangdong University of Technology, 2019 (in Chinese). [14] WU X Q, XU C J, ZHANG Z M. Preparation and optimization of Si3N4 ceramic slurry for low-cost LCD mask stereolithography[J]. Ceramics International, 2021, 47(7): 9400-9408. [15] LIU Y, ZHAN L N, WEN L, et al. Effects of particle size and color on photocuring performance of Si3N4 ceramic slurry by stereolithography[J]. Journal of the European Ceramic Society, 2021, 41(4): 2386-2394. [16] HUANG R J, JIANG Q G, WU H D, et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method[J]. Ceramics International, 2019, 45(4): 5158-5162. [17] LIU Y, ZHAN L N, HE Y, et al. Stereolithographical fabrication of dense Si3N4 ceramics by slurry optimization and pressure sintering[J]. Ceramics International, 2020, 46(2): 2063-2071. [18] 刘国仟,闫长海,张可强,等.立体光刻增材制造中固含量对Al2O3陶瓷性能的影响(英文)[J].无机材料学报,2022(3):353-360. LIU G Q, YAN C H, ZHANG K Q, et al. Effect of solid loading on the property of Al2O3 ceramics in stereolithographic additive manufacturing[J]. Journal of Inorganic Materials, 2022(3): 353-360. [19] NAKAMURA T, TSUTSUMI R, HASHIGUCHI C, et al. Increasing chemisorbed silane coupling agents in surface-treated layer of silica particles[J]. Journal of Applied Polymer Science, 2021, 138(44): 51297. [20] LIU Y, CHENG L J, LI H, et al. Formation mechanism of stereolithography of Si3N4 slurry using silane coupling agent as modifier and dispersant[J]. Ceramics International, 2020, 46(10): 14583-14590. [21] 刘鹏飞.超细氮化硅粉体水相分散性研究[D].马鞍山:安徽工业大学,2018. LIU P F. Study on dispersibility of ultrafine silicon nitride powder in aqueous media[D]. Maanshan: Anhui Universit of Technology, 2018 (in Chinese). [22] 代建清,黄 勇,谢志鹏,等.氮化硅粉末的傅里叶变换红外光谱研究[J].光谱实验室,2001,18(1):78-83. DAI J Q, HUANG Y, XIE Z P, et al. FTIR study of Si3N4 powder[J]. Chinese Journal of Spectroscopy Laboratory, 2001, 18(1): 78-83 (in Chinese). [23] 宋丽岑,赵 娟,杨 明,等.硅烷偶联剂表面改性SiC粉体及其浆料流变性能[J].中国粉体技术,2015,21(6):88-90+100. SONG L C, ZHAO J, YANG M, et al. Surface modification of SiC powders by silane coupling agents and their rheological property of slurry[J]. China Powder Science and Technology, 2015, 21(6): 88-90+100 (in Chinese). [24] 刘晓暄,廖正福,崔艳艳.高分子光化学原理与光固化技术[M].北京:科学出版社,2019:541. LIU X X, LIAO Z F, CUI Y Y, et al. Polymer photochemical principle and photocuring technology[M]. Beijing: Science Press, 2019: 541 (in Chinese). [25] GRIFFITH M L, HALLORAN J W. Scattering of ultraviolet radiation in turbid suspensions[J]. Journal of Applied Physics, 1997, 81(6): 2538-2546. [26] GENTRY S P, HALLORAN J W. Light scattering in absorbing ceramic suspensions: effect on the width and depth of photopolymerized features[J]. Journal of the European Ceramic Society, 2015, 35(6): 1895-1904. [27] 严鹏飞,严 彪,王联凤,等.氮化硅光固化增材制造工艺与性能的研究[J].有色金属材料与工程,2018,39(6):12-15. YAN P F, YAN B, WANG L F, et al. Study on stereo lithography additive manufacturing process and properties silicon nitride[J]. Nonferrous Metal Materials and Engineering, 2018, 39(6): 12-15 (in Chinese). |