[1] LIU C X, REN Q, HUANG Q X, et al. Study of high-alumina-silicon glass structure and performance modified by Li2O replacing Na2O[J]. Journal of Non-Crystalline Solids, 2021, 572: 121115. [2] CUI J D, CAO X, SHI L F, et al. The effect of substitution of Al2O3 and B2O3 for SiO2 on the properties of cover glass for liquid crystal display: structure, thermal, visco-elastic, and physical properties[J]. International Journal of Applied Glass Science, 2021, 12(3): 443-456. [3] FERNANDES H R, KAPOOR S, PATEL Y, et al. Composition-structure-property relationships in Li2O-Al2O3-B2O3 glasses[J]. Journal of Non-Crystalline Solids, 2018, 502: 142-151. [4] ZEKRI M, HERRMANN A, ERLEBACH A, et al. The structure of Gd3+-doped Li2O and K2O containing aluminosilicate glasses from molecular dynamics simulations[J]. Materials, 2021, 14(12): 3265. [5] SVIRIDOV S I, TYURNINA N G, TYURNINA Z G, et al. Ion-exchange interaction of glass-forming silicate melts with mixed chloride melts[J]. Glass Physics and Chemistry, 2018, 44(2): 85-91. [6] KONAR B, KIM D G, JUNG I H. Critical thermodynamic optimization of the Li2O-Al2O3-SiO2 system and its application for the thermodynamic analysis of the glass-ceramics[J]. Journal of the European Ceramic Society, 2018, 38(11): 3881-3904. [7] 王敏博,姜良宝,李晓宇,等.钠钙/铝硅酸盐玻璃疲劳行为研究进展[J].材料工程,2021,49(2):54-65. WANG M B, JIANG L B, LI X Y, et al. Research progress in fatigue behavior of soda lime/aluminosilicate glass[J]. Journal of Materials Engineering, 2021, 49(2): 54-65 (in Chinese). [8] WANG M C, LI W L, CHENG C W, et al. The phase transformation and crystallization kinetics of (1-x)Li2O-xNa2O-Al2O3-4SiO2 glasses[J]. Materials Chemistry and Physics, 2010, 123(1): 203-209. [9] ZU Q, HUANG S X, ZHANG Y, et al. Compositional effects on mechanical properties, viscosity, and crystallization of (Li2O, B2O3, MgO)-Al2O3-SiO2 glasses[J]. Journal of Alloys and Compounds, 2017, 728: 552-563. [10] OSAKA A, ONO M, TAKAHASHI K. Aluminum oxide anomaly and structure model of alkali aluminosilicate glasses[J]. Journal of the American Ceramic Society, 1987, 70(4): 242-245. [11] MAENG J H, KIM D H, PARK S M, et al. The effect of chemical treatment on the strength and transmittance of soda-lime cover glass for mobile[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(9): 1779-1783. [12] GROSS T M. Ion exchanged glass with high resistance to sharp contact failure and articles made therefrom: US11230494[P]. 2022-01-25. [13] JIANG Q, YAN J T, WANG L, et al. Chemical strengthening of Li+-containing phosphosilicate glass via a two-step ion-exchange process[J]. Journal of the Australian Ceramic Society, 2021, 57(4): 1285-1290. [14] DAS C R. Chemical durability of sodium silicate glasses containing AI2O3 and ZrO2[J]. Journal of the American Ceramic Society, 1981, 64(4): 188-193. [15] LIN C, SHEN P, CHANG H M, et al. Effect of ZrO2 additive and the combination of alkali silicate glasses[J]. Journal of the European Ceramic Society, 2006, 26: 3613. [16] GUI H, LI C, LIN C W, et al. Glass forming, crystallization, and physical properties of MgO-Al2O3-SiO2-B2O3 glass-ceramics modified by ZnO replacing MgO[J]. Journal of the European Ceramic Society, 2019, 39(4): 1397-1410. [17] NEUVILLE D R, CORMIER L, MONTOUILLOUT V, et al. Amorphous materials: properties, structure, and durability: structure of Mg- and Mg/Ca aluminosilicate glasses: 27Al NMR and Raman spectroscopy investigations[J]. American Mineralogist, 2008, 93(11/12): 1721-1731. [18] KIRAN P, RAMAKRISHNA V, TREBBIN M, et al. Effective role of CaO/P2O5 ratio on SiO2-CaO-P2O5 glass system[J]. Journal of Advanced Research, 2017, 8(3): 279-288. [19] LI W Q, GAROFALINI S H. Molecular dynamics simulation of lithium diffusion in Li2O-Al2O3-SiO2 glasses[J]. Solid State Ionics, 2004, 166(3/4): 365-373. [20] ZHAO Y X, DU J C, QIAO X, et al. Ionic self-diffusion of Na2O-Al2O3-SiO2 glasses from molecular dynamics simulations[J]. Journal of Non-Crystalline Solids, 2020, 527: 119734. [21] GAO L F, LIU X C, BAI J, et al. Structure and flow properties of coal ash slag using ring statistics and molecular dynamics simulation: role of CaO/Na2O in SiO2-Al2O3-CaO-Na2O[J]. Chemical Engineering Science, 2021, 231: 116285. [22] LUO J, DENG B H, VARGHEESE K D, et al. Atomic-scale modeling of crack branching in oxide glass[J]. Acta Materialia, 2021, 216: 117098. [23] VARGHEESE K D, TANDIA A, MAURO J C. Molecular dynamics simulations of ion-exchanged glass[J]. Journal of Non-Crystalline Solids, 2014, 403: 107-112. [24] QI J, LIU C J, JIANG M F. Effect of Li2O on the crystallization behavior of CaO-Al2O3-SiO2-Li2O-Ce2O3 mold slags[J]. Ceramics International, 2021, 47(15): 20850-20856. [25] MCMILLAN P F, PETUSKEY W T, COTE B, et al. A structural investigation of CaO-Al2O3 glasses via 27Al MAS-NMR[J]. Journal of Non-Crystalline Solids, 1996, 195(3): 261-271. [26] MCMILLAN P, PIRIOU B. Raman spectroscopy of calcium aluminate glasses and crystals[J]. Journal of Non-Crystalline Solids, 1983, 55(2): 221-242. [27] KIM T S, PARK J H. Structure-viscosity relationship of low-silica calcium aluminosilicate melts[J]. ISIJ International, 2014, 54(9): 2031-2038. [28] XU X J, LI J Z, YAO L P. A study of glass structure in Li2O-SiO2, Li2O-Al2O3-SiO2 and Li-Al-Si-O-N systems[J]. Journal of Non-Crystalline Solids, 1989, 112(1/2/3): 80-84. [29] HE Y, SHEN X F, JIANG Y, et al. Effects of Li2O replacing Na2O on glass forming, structure and properties of Na2O-MgO-Al2O3-SiO2 glass and glass-ceramics[J]. Materials Chemistry and Physics, 2021, 258: 123865. [30] VARSHNEYA A K. The physics of chemical strengthening of glass: room for a new view[J]. Journal of Non-Crystalline Solids, 2010, 356(44/45/46/47/48/49): 2289-2294. [31] GY R. Ion exchange for glass strengthening[J]. Materials Science and Engineering: B, 2008, 149(2): 159-165. [32] YANG K, ZHENG W H, CHENG J S. Effect of Li2O on viscosity and thermal expansion of silicate glass[J]. Advanced Materials Research, 2011, 403/404/405/406/407/408: 70-74. [33] ELLISON A, CORNEJO I A. Glass substrates for liquid crystal displays[J]. International Journal of Applied Glass Science, 2010, 1(1): 87-103. [34] 田英良,梁新辉,张 磊,等.高碱铝硅酸盐玻璃的超薄浮法工艺探索[J].武汉理工大学学报,2010,32(22):102-105+118. TIAN Y L, LIANG X H, ZHANG L, et al. Exploration of ultrathin high-alkali alumino-silicate glass by float process technology[J]. Journal of Wuhan University of Technology, 2010, 32(22): 102-105+118 (in Chinese). [35] PILKINGTON L A B. The float glass process[J]. Proceedings of the Royal Society A, 1969, 314: 1. [36] 姜良宝,厉 蕾,张官理,等.化学强化铝硅酸盐玻璃研究进展[J].材料工程,2014,42(10):106-112. JIANG L B, LI L, ZHANG G L, et al. Progress in research on chemical strengthened aluminosilicate glass[J]. Journal of Materials Engineering, 2014, 42(10): 106-112 (in Chinese). [37] 杨宝瑛.基于二步法化强工艺的盖板玻璃组成设计与性能研究[D].北京:北京工业大学,2019. YANG B Y. Influence of cover composition design and properties based on two-step chemical strengthened process[D]. Beijing: Beijing University of Technology, 2019 (in Chinese). [38] 王明忠,梁新辉,宋占财,等.锂铝硅酸盐玻璃的化学强化工艺参数研究[J].玻璃搪瓷与眼镜,2021,49(2):18-22. WANG M Z, LIANG X H, SONG Z C, et al. Study on parameters of chemically tempered process for lithium aluminosilicate glass[J]. Glass Enamel & Ophthalmic Optics, 2021, 49(2): 18-22 (in Chinese). [39] BERNESCHI S, RIGHINI G C, PELLI S. Towards a glass new world: the role of ion-exchange in modern technology[J]. Applied Sciences, 2021, 11(10): 4610. [40] 胡 伟,王海风,谈宝权,等.化学强化过程中的离子迁移现象与规律研究[J].玻璃与搪瓷,2018,46(4):10-14. HU W, WANG H F, TAN B Q, et al. Study on ion migration in the ion exchange process of chemically strengthened glass[J]. Glass & Enamel, 2018, 46(4): 10-14 (in Chinese). [41] STAVROU E, ZAUG J M, BASTEA S, et al. A study of tantalum pentoxide Ta2O5 structures up to 28 GPa[J]. Journal of Applied Physics, 2017, 121(17): 175901. [42] SHEN Z C, ZHAO Y Y, TIAN Z Q, et al. Effect of doping La2O3 on the structure and properties of the titanium Barium silicate glass[J]. Journal of Non-Crystalline Solids, 2018, 499: 17-24. [43] LI B, LI W, ZHENG J G. Influence of Y2O3 addition on crystallization, thermal, mechanical, and electrical properties of BaO-Al2O3-B2O3-SiO2 glass-ceramic for ceramic ball grid array package[J]. Journal of Electronic Materials, 2018, 47(1): 766-772. [44] MASCHIO R D, SCARDI P. Crystallization and mechanical properties of a ZrO2-rich glass ceramic[J]. Ceramics International, 1991, 17(1): 31-36. [45] YEKTA B E, ALIZADEH P, REZAZADEH L. Synthesis of glass-ceramic glazes in the ZnO-Al2O3-SiO2-ZrO2 system[J]. Journal of the European Ceramic Society, 2007, 27(5): 2311-2315. [46] MIRHADI B, MEHDIKHANI B. Crystallization behavior and microstructure of (CaO·ZrO2·SiO2)-Cr2O3 based glasses[J]. Journal of Non-Crystalline Solids, 2011, 357(22/23): 3711-3716. [47] WONDRACZEK L, BOUCHBINDER E, EHRLICHE A, et al. Advancing the mechanical performance of glasses: perspectives and challenges[J]. Advanced Materials, 2022, 34(14): 2109029. [48] SANGMO K, HOANG V Q, WUNG B C, et al. Photovoltaic technologies for flexible solar cells: beyond silicon[J]. Materials Today Energy, 2021, 19: 100583. |