[1] 李红霞.双碳背景下耐火材料科技创新的思考[J].耐火材料,2021,55(5):381-384. LI H X. Reflection on science and technology innovation of refractories under carbon emission peak and carbon neutrality background[J]. Refractories, 2021, 55(5): 381-384 (in Chinese). [2] HALDER D, MIDYA P R, DAS S, et al. Amorphous carbon nanotubes incorporated MgO-graphite composite with enhanced properties for steel making furnaces[J]. Ceramics International, 2016, 42(14): 15826-15835. [3] SONG J B, ZHANG H J, WANG J K, et al. High-yield production of large aspect ratio carbon nanotubes via catalytic pyrolysis of cheap coal tar pitch[J]. Carbon, 2018, 130: 701-713. [4] ZHU T B, LI Y W, SANG S B, et al. Fracture behavior of low carbon MgO-C refractories using the wedge splitting test[J]. Journal of the European Ceramic Society, 2017, 37(4): 1789-1797. [5] ZHU T B, LI Y W, SANG S B, et al. A new approach to fabricate MgO-C refractories with high thermal shock resistance by adding artificial graphite[J]. Journal of the European Ceramic Society, 2018, 38(4): 2179-2185. [6] ZHU T B, LI Y W, JIN S L, et al. Microstructure and mechanical properties of MgO-C refractories containing expanded graphite[J]. Ceramics International, 2013, 39(4): 4529-4537. [7] ZHU T B, LI Y W, SANG S B, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories[J]. Ceramics International, 2014, 40(3): 4333-4340. [8] ZHU T B, LI Y W, LUO M, et al. Microstructure and mechanical properties of MgO-C refractories containing graphite oxide nanosheets (GONs)[J]. Ceramics International, 2013, 39(3): 3017-3025. [9] LIU B, SUN J L, TANG G S, et al. Effects of nanometer carbon black on performance of low-carbon MgO-C composites[J]. Journal of Iron and Steel Research, International, 2010, 17(10): 75-78. [10] BEHERA S, SARKAR R. Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO-C refractory: an in-depth investigation[J]. Ceramics International, 2016, 42(16): 18484-18494. [11] BAG M, ADAK S, SARKAR R. Study on low carbon containing MgO-C refractory: use of nano carbon[J]. Ceramics International, 2012, 38(3): 2339-2346. [12] BAG M, ADAK S, SARKAR R. Nano carbon containing MgO-C refractory: effect of graphite content[J]. Ceramics International, 2012, 38(6): 4909-4914. [13] MAHATO S, PRATIHAR S K, BEHERA S K. Fabrication and properties of MgO-C refractories improved with expanded graphite[J]. Ceramics International, 2014, 40(10): 16535-16542. [14] 程 峰,王军凯,李发亮,等.低碳镁碳耐火材料的研究进展[J].耐火材料,2015,49(5):394-400. CHENG F, WANG J K, LI F L, et al. Recent progress in low-carbon MgO-C refractories[J]. Refractories, 2015, 49(5): 394-400 (in Chinese). [15] MA S H, SHI K, XIA Y, et al. Effect of modified MgO aggregates on mechanical properties of magnesium aluminate spinel refractories[J]. Ironmaking & Steelmaking, 2021, 48(3): 292-298. [16] HAN X Y, SHI K, MA S H, et al. Mechanical properties and microstructure evolution of MgO-Al-C slide plate refractories in presence of Al powder-modified magnesia aggregates[J]. Ceramics International, 2022, 48(4): 4576-4583. [17] GU Q, MA T, ZHAO F, et al. Enhancement of the thermal shock resistance of MgO-C slide plate materials with the addition of nano-ZrO2 modified magnesia aggregates[J]. Journal of Alloys and Compounds, 2020, 847: 156339. [18] GU Q, LIU G Q, LI H X, et al. Synthesis of MgO-MgAl2O4 refractory aggregates for application in MgO-C slide plate[J]. Ceramics International, 2019, 45(18): 24768-24776. [19] CHEN Q L, LI Y W, ZHU T B, et al. Improved thermal shock resistance of MgO-C refractories with addition of calcium magnesium aluminate (CMA) aggregates[J]. Ceramics International, 2022, 48(2): 2500-2509. [20] TALABI S I, LUZ A P, LUCAS A A, et al. Catalytic graphitization of novolac resin for refractory applications[J]. Ceramics International, 2018, 44(4): 3816-3824. [21] WEI G P, ZHU B Q, LI X C, et al. Microstructure and mechanical properties of low-carbon MgO-C refractories bonded by an Fe nanosheet-modified phenol resin[J]. Ceramics International, 2015, 41(1): 1553-1566. [22] 朱伯铨,魏国平,李享成,等.炭化温度对掺杂改性树脂炭结构及其抗氧化性能的影响[J].硅酸盐学报,2014,42(6):773-778. ZHU B Q, WEI G P, LI X C, et al. Effect of carbonization temperature on microstructure and oxidation resistance of carbon derived from doping modified phenol resin[J]. Journal of the Chinese Ceramic Society, 2014, 42(6): 773-778 (in Chinese). [23] 汪 贤,朱伯铨,李享成,等.金属共掺杂对树脂炭结构及抗氧化性能的影响[J].硅酸盐学报,2015,43(3):316-321. WANG X, ZHU B Q, LI X C, et al. Effect of metal co-doping on microstructure and oxidation resistance of carbon derived from phenol resin[J]. Journal of the Chinese Ceramic Society, 2015, 43(3): 316-321 (in Chinese). [24] LIU Z Y, YU J K, YUE S J, et al. Effect of carbon content on the oxidation resistance and kinetics of MgO-C refractory with the addition of Al powder[J]. Ceramics International, 2020, 46(3): 3091-3098. [25] CHEN Y, DENG C J, WANG X, et al. Evolution of c-ZrN nanopowders in low-carbon MgO-C refractories and their properties[J]. Journal of the European Ceramic Society, 2021, 41(1): 963-977. [26] 彭 耐,邓承继,祝洪喜,等.成型压力对原位氮化生成Si3N4结合MgO-C材料性能影响[J].硅酸盐通报,2015,34(10):2930-2933. PENG N, DENG C J, ZHU H X, et al. Effects of briquetting pressure on the microstructure and performance of in situ formed Si3N4 bonding MgO-C material[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(10): 2930-2933 (in Chinese). [27] LIU H T, MENG F R, LI Q, et al. Phase behavior analysis of MgO-C refractory at high temperature: influence of Si powder additives[J]. Ceramics International, 2015, 41(3): 5186-5190. [28] 汪 贤,朱伯铨,李享成,等.Fe粉对MgO-C材料显微结构和性能的影响[J].耐火材料,2015,49(6):412-415. WANG X, ZHU B Q, LI X C, et al. Influence of Fe powder on microstructure and properties of MgO-C refractories[J]. Refractories, 2015, 49(6): 412-415 (in Chinese). [29] CHEN M, XU L, HUANG W J, et al. Properties of MgO-Fe-C refractories as linings of vanadium-extraction converter[J]. Journal of the European Ceramic Society, 2014, 34(15): 4011-4019. [30] GAO S, XU L, CHEN M, et al. Effect of Fe addition on the microstructure and oxidation behavior of MgO-C refractory[J]. Materials Chemistry and Physics, 2019, 238: 121935. [31] CHEN M, GAO S, XU L, et al. High temperature mechanical and corrosion resistance of Fe-containing MgO-C refractory in oxidizing atmosphere[J]. Ceramics International, 2019, 45(16): 21023-21028. [32] LUZ A P, SOUZA T M, PAGLIOSA C, et al. In situ hot elastic modulus evolution of MgO-C refractories containing Al, Si or Al-Mg antioxidants[J]. Ceramics International, 2016, 42(8): 9836-9843. [33] 彭肖仟,张巧莲,王志强.金属复合添加剂对低碳MgO-C砖抗氧化性能的影响[J].材料导报,2010,24(s1):490-492. PENG X Q, ZHANG Q L, WANG Z Q. Effect of compound additives of metal and alloy powders on oxidation resistance of low-carbon MgO-C bricks[J]. Materials Review, 2010, 24(s1): 490-492 (in Chinese). [34] 曹亚平,鄢 文,李 楠.Si-SiC复合粉添加量对低碳镁碳耐火材料性能的影响[J].耐火材料,2016,50(3):170-173. CAO Y P, YAN W, LI N. Effect of Si-SiC composite powder addition on properties of low-carbon MgO-C refractories[J]. Refractories, 2016, 50(3): 170-173 (in Chinese). [35] XIAO J L, CHEN J F, WEI Y W, et al. Oxidation behaviors of MgO-C refractories with different Si/SiC ratio in the 1 100~1 500 ℃ range[J]. Ceramics International, 2019, 45(17): 21099-21107. [36] ZHANG Y, CHEN J F, LI N, et al. The microstructure evolution and mechanical properties of MgO-C refractories with recycling Si/SiC solid waste from photovoltaic industry[J]. Ceramics International, 2018, 44(14): 16435-16442. [37] DING D H, CHONG X C, XIAO G Q, et al. Combustion synthesis of B4C/Al2O3/C composite powders and their effects on properties of low carbon MgO-C refractories[J]. Ceramics International, 2019, 45(13): 16433-16441. [38] 田守信.高温真空条件下添加物对镁碳砖氧化行为的影响[J].耐火材料,2017,51(6):442-445. TIAN S X. Effects of additives on oxidation behavior of magnesia-carbon bricks under high temperature and vacuum conditions[J]. Refractories, 2017, 51(6): 442-445 (in Chinese). [39] YANG Y, YU J, ZHAO H Z, et al. Cr7C3: a potential antioxidant for low carbon MgO-C refractories[J]. Ceramics International, 2020, 46(12): 19743-19751. [40] YU C, DENG C J, ZHU H X, et al. Synthesis of hexagonal plate-like Al4Si2C5 and the effect of Al4Si2C5 addition to Al2O3-C refractory[J]. Advanced Powder Technology, 2017, 28(1): 177-184. [41] YU C, DING J, DENG C J, et al. The effects of sintering temperature on the morphology and physical properties of in situ Si3N4 bonded MgO-C refractory[J]. Ceramics International, 2018, 44(1): 1104-1109. [42] LIAO N, LI Y W, JIN S L, et al. Enhanced mechanical performance of Al2O3-C refractories with nano carbon black and in situ formed multi-walled carbon nanotubes (MWCNTs)[J]. Journal of the European Ceramic Society, 2016, 36(3): 867-874. [43] ZHU T B, LI Y W, SANG S B. Heightening mechanical properties and thermal shock resistance of low-carbon magnesia-graphite refractories through the catalytic formation of nanocarbons and ceramic bonding phases[J]. Journal of Alloys and Compounds, 2019, 783: 990-1000. [44] ZHU T B, LI Y W, JIN S L, et al. Catalytic formation of one-dimensional nanocarbon and MgO whiskers in low carbon MgO-C refractories[J]. Ceramics International, 2015, 41(3): 3541-3548. [45] ZHU T B, LI Y W, SANG S B, et al. Formation of nanocarbon structures in MgO-C refractories matrix: influence of Al and Si additives[J]. Ceramics International, 2016, 42(16): 18833-18843. [46] CHEN Y, WANG X, DENG C J, et al. Growth mechanism of in situ MgSiN2 and its synergistic effect on the properties of MgO-C refractories[J]. Construction and Building Materials, 2021, 289: 123032. [47] CHEN Y, DENG C J, WANG X, et al. Effect of Si powder-supported catalyst on the microstructure and properties of Si3N4-MgO-C refractories[J]. Construction and Building Materials, 2020, 240: 117964. [48] WANG X, CHEN Y, DING J, et al. Influence of ceramic phase content and its morphology on mechanical properties of MgO-C refractories under high temperature nitriding[J]. Ceramics International, 2021, 47(8): 10603-10610. [49] 陈 洋,邓承继,王 杏,等.原位催化Si粉制备Si3N4复合MgO-C耐火材料[J].硅酸盐学报,2019,47(12):1834-1840. CHEN Y, DENG C J, WANG X, et al. Preparation of Si3N4 composite MgO-C refractory by in situ catalytic Si powder[J]. Journal of the Chinese Ceramic Society, 2019, 47(12): 1834-1840 (in Chinese). [50] CHEN J F, LI N, HUBÁLKOVÁ J, et al. Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: antioxidant or alternative carbon source?[J]. Journal of the European Ceramic Society, 2018, 38(9): 3387-3394. [51] CHEN J F, LI N, YAN W. Influence of Ti3AlC2 on corrosion resistance and microstructure of Al2O3-Ti3AlC2-C refractories in contact with ladle slag[J]. Journal of the European Ceramic Society, 2016, 36(6): 1505-1511. |