[1] FERDOUS W, MANALO A, SIDDIQUE R, et al. Recycling of landfill wastes (tyres, plastics and glass) in construction: a review on global waste generation, performance, application and future opportunities[J]. Resources, Conservation and Recycling, 2021, 173: 105745. [2] 曲锴鑫,李 雪,宋鹏豪,等.废旧橡胶轮胎的再利用研究进展[J].化工科技,2019,27(6):71-75. QU K X, LI X, SONG P H, et al. Progress in recycling of waste rubber tires[J]. Science & Technology in Chemical Industry, 2019, 27(6): 71-75 (in Chinese). [3] MOHAJERANI A, BURNETT L, SMITH J V, et al. Recycling waste rubber tyres in construction materials and associated environmental considerations: a review[J]. Resources, Conservation and Recycling, 2020, 155: 104679. [4] SVOBODA J, VACLAVIK V, DVORSKY T, et al. The potential utilization of the rubber material after waste tire recycling[J]. IOP Conference Series: Materials Science and Engineering, 2018, 385: 012057. [5] 赵江霞,高越青,梁超锋,等.橡胶混凝土动态力学性能研究进展[J].混凝土,2020(8):37-40. ZHAO J X, GAO Y Q, LIANG C F, et al. Review on the dynamic mechanical properties of rubber concrete[J]. Concrete, 2020(8): 37-40 (in Chinese). [6] 冀彩云,高正勇,崔小飞.橡胶混凝土的力学性能和耐久性试验研究[J].新型建筑材料,2020,47(7):61-64. JI C Y, GAO Z Y, CUI X F. Study on mechanical properties and durability of rubber concrete[J]. New Building Materials, 2020, 47(7): 61-64 (in Chinese). [7] 葛文慧.废弃橡胶混凝土的力学性能和断裂韧性及抗冻性能[J].合成橡胶工业,2019,42(6):474-478. GE W H. Mechanical properties, fracture toughness and frost resistance of waste rubber concrete[J]. China Synthetic Rubber Industry, 2019, 42(6): 474-478 (in Chinese). [8] 袁 兵,刘 锋,丘晓龙,等.橡胶混凝土不同应变率下抗压性能试验研究[J].建筑材料学报,2010,13(1):12-16. YUAN B, LIU F, QIU X L, et al. Experimental study on compressive performances of rubber concrete under different strain rate[J]. Journal of Building Materials, 2010, 13(1): 12-16 (in Chinese). [9] 赵荣生.冲击荷载作用下橡胶混凝土的力学性能试验研究[J].新型建筑材料,2021,48(5):65-70. ZHAO R S. Experimental study on mechanical properties of rubber concrete under impact load[J]. New Building Materials, 2021, 48(5): 65-70 (in Chinese). [10] 杨荣周,徐 颖,陈佩圆,等.干、湿养护下橡胶细集料水泥砂浆压缩破裂及能量演化特性[J].材料导报,2020,34(4):4049-4055. YANG R Z, XU Y, CHEN P Y, et al. Compressive rupture and energy evolution characteristics of rubber fine aggregate cement mortar under dry and wet curing conditions[J]. Materials Reports, 2020, 34(4): 4049-4055 (in Chinese). [11] 胡 时,徐 颖.掺级配良好再生PVC骨料混凝土的力学和吸能性能[J].工程塑料应用,2020,48(1):90-94. HU S, XU Y. Mechanical and energy absorption performances of concrete with good gradation recycled PVC aggregate[J]. Engineering Plastics Application, 2020, 48(1): 90-94 (in Chinese). [12] 中华人民共和国住房和城乡建设部,国家市场监督管理总局.混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社,2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. Standard of test method for physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Architecture and Architecture Press, 2019 (in Chinese). [13] 薛 刚,孙立所,许 胜,等.橡胶混凝土抗压性能及细观破坏机理研究[J].沈阳建筑大学学报(自然科学版),2020,36(6):1082-1090. XUE G, SUN L S, XU S, et al. Study on compressive properties and meso failure mechanism of rubber concrete[J]. Journal of Shenyang Jianzhu University (Natural Science), 2020, 36(6): 1082-1090 (in Chinese). [14] FENG W H, LIU F, YANG F, et al. Compressive behaviour and fragment size distribution model for failure mode prediction of rubber concrete under impact loads[J]. Construction and Building Materials, 2021, 273: 121767. [15] 胡艳丽,高培伟,李富荣,等.不同取代率的橡胶混凝土力学性能试验研究[J].建筑材料学报,2020,23(1):85-92. HU Y L, GAO P W, LI F R, et al. Experimental study on mechanical properties of rubber concrete with different substitution rates[J]. Journal of Building Materials, 2020, 23(1): 85-92 (in Chinese). [16] 李海龙,徐 颖,汪海波,等.硅灰对橡胶混凝土抗压强度与吸能性能影响试验研究[J].硅酸盐通报,2019,38(7):2222-2227. LI H L, XU Y, WANG H B, et al. Experimental study on compressive strength and energy absorption performance of silica fume on rubber concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2222-2227 (in Chinese). [17] LIU C, YAO C L, ZHANG S Y, et al. Research status and prospect of initial damage of rock mass in laboratory[J]. IOP Conference Series: Earth and Environmental Science, 2021, 632(2): 022030. [18] 丁 峰.快速应变率下对中强混凝土峰值应力与峰值应变的影响[J].河北联合大学学报(自然科学版),2012,34(3):141-143. DING F. Experimental studyon the behavior of compressive strength and peak strain of concrete under high strain rates[J]. Journal of Hebei United University (Natural Science Edition), 2012, 34(3): 141-143 (in Chinese). [19] 刘基程.珊瑚混凝土变形破坏过程能量演化规律及损伤特性研究[D].南京:南京理工大学,2020. LIU J C. Study on energy evolution and damage characteristics of coral concrete during deformation and failure process[D]. Nanjing: Nanjing University of Science and Technology, 2020 (in Chinese). [20] 谢和平,彭瑞东,鞠 杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570. XIE H P, PENG R D, JU Y. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565-3570 (in Chinese). |