[1] 宋 强,张 鹏,鲍玖文,等.泡沫混凝土的研究进展与应用[J].硅酸盐学报,2021,49(2):398-410. SONG Q, ZHANG P, BAO J W, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410 (in Chinese). [2] 韩建国,毕 耀,黎梦圆,等.矿物掺合料和化学外加剂对胶凝材料浆体的流变参数的影响[J].土木工程学报,2021,54(10):55-63. HAN J G, BI Y, LI M Y, et al. Effect of mineral and chemical admixtures on rheological parameters of binder paste[J]. China Civil Engineering Journal, 2021, 54(10): 55-63 (in Chinese). [3] BEHERA S K, MISHRA D P, SINGH P, et al. Utilization of mill tailings, fly ash and slag as mine paste backfill material: review and future perspective[J]. Construction and Building Materials, 2021, 309: 125120. [4] 刘仍光,阎培渝.水泥-矿渣复合胶凝材料中矿渣的水化特性[J].硅酸盐学报,2012,40(8):1112-1118. LIU R G, YAN P Y. Hydration characteristics of slag in cement-slag complex binder[J]. Journal of the Chinese Ceramic Society, 2012, 40(8): 1112-1118 (in Chinese). [5] WANG X Y. Analysis of hydration kinetics and strength progress in cement-slag binary composites[J]. Journal of Building Engineering, 2021, 35: 101810. [6] 徐泽华,赵庆新,张津瑞,等.界面过渡区对混凝土徐变性能的影响[J].硅酸盐学报,2021,49(2):347-356. XU Z H, ZHAO Q X, ZHANG J R, et al. Influence of interface transition zone on creep properties of concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 347-356 (in Chinese). [7] FULLER W B, THOMPSON S E. The laws of proportioning concrete[J]. Transactions of the American Society of Civil Engineers, 1907, 59(2): 67-143. [8] 李 滢,杨 静.胶凝材料颗粒级配对水泥凝胶体结构及强度的影响[J].新型建筑材料,2004,31(3):1-4. LI Y, YANG J. Effect of particle size of cementitious material on structure and strength of cement gel[J]. New Building Materials, 2004, 31(3): 1-4 (in Chinese). [9] SEVIM O, BARAN M, DEMIR Š. Mechanical and physical properties of cementitious composites containing fly ash or slag classified with help of particle size distribution[J]. Romanian Journal of Materials, 2021, 51(1): 67-77. [10] 赵旭光,文梓芸,赵三银,等.高炉矿渣粉的粒度分布对其性能的影响[J].硅酸盐学报,2005,33(7):907-911+915. ZHAO X G, WEN Z Y, ZHAO S Y, et al. Effect of particle size distribution of ground granulated blast furnace slag on its properties[J]. Journal of the Chinese Ceramic Society, 2005, 33(7): 907-911+915 (in Chinese). [11] CAO C, CHEUNG M M S. Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures[J]. Construction and Building Materials, 2014, 51: 75-81. [12] 姜文镪,刘清风.冻融循环下混凝土中氯离子传输研究进展[J].硅酸盐学报,2020,48(2):258-272. JIANG W Q, LIU Q F. Chloride transport in concrete subjected to freeze-thaw cycles: a short review[J]. Journal of the Chinese Ceramic Society, 2020, 48(2): 258-272 (in Chinese). [13] ZHAO H, SUN W, WU X M, et al. The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures[J]. Journal of Cleaner Production, 2015, 95: 66-74. [14] FAN J C, ZHU H G, SHI J, et al. Influence of slag content on the bond strength, chloride penetration resistance, and interface phase evolution of concrete repaired with alkali activated slag/fly ash[J]. Construction and Building Materials, 2020, 263: 120639. [15] ZARZUELA R, LUNA M, CARRASCOSA L M, et al. Producing C-S-H gel by reaction between silica oligomers and portlandite: a promising approach to repair cementitious materials[J]. Cement and Concrete Research, 2020, 130: 106008. [16] 韩方晖,刘仍光,阎培渝.矿渣对复合胶凝材料硬化浆体微观结构的影响[J].电子显微学报,2014,33(1):40-45. HAN F H, LIU R G, YAN P Y. Influence of slag on microstructure of complex binder pastes[J]. Journal of Chinese Electron Microscopy Society, 2014, 33(1): 40-45 (in Chinese). [17] LI W T, YI Y L. Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag[J]. Construction and Building Materials, 2020, 238: 117713. [18] PHOO-NGERNKHAM T, PHIANGPHIMAI C, INTARABUT D, et al. Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue[J]. Construction and Building Materials, 2020, 247: 118543. [19] YI Y, LI C, LIU S, et al. Magnesium sulfate attack on clays stabilised by carbide slag- and magnesia-ground granulated blast furnace slag[J]. Géotechnique Letters, 2015, 5(4): 306-312. [20] 杜惠惠,倪 文,高广军.水淬高钛高炉渣制备C40全固废混凝土试验研究[J].材料导报,2020,34(24):24055-24060. DU H H, NI W, GAO G J. Experimental study on preparation of C40 concrete with industrial solid wastes from high-titanium blast furnace slag[J]. Materials Reports, 2020, 34(24): 24055-24060 (in Chinese). [21] DE AZEVEDO N H, DE MATOS P R, GLEIZE P J P, et al. Effect of thermal treatment of SiC nanowhiskers on rheological, hydration, mechanical and microstructure properties of Portland cement pastes[J]. Cement and Concrete Composites, 2021, 117: 103903. [22] CHEN X, LI J S, XUE Q, et al. Sludge biochar as a green additive in cement-based composites: mechanical properties and hydration kinetics[J]. Construction and Building Materials, 2020, 262: 120723. [23] CHENG X J, SHI L, LIU Q Y, et al. Heat effects of pyrolysis of 15 acid washed coals in a DSC/TGA-MS system[J]. Fuel, 2020, 268: 117325. [24] 胡建城,吕 阳,何晨昊,等.纳米二氧化硅粉末对水泥-粉煤灰体系泡沫混凝土力学性能及水化的影响[J].硅酸盐通报,2019,38(5):1390-1394. HU J C, LYU Y, HE C H, et al. Effect of nano-silica on mechanical properties and hydration of foamed concrete in the cement-fly ash system[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1390-1394 (in Chinese). [25] GWON S, CHOI Y C, SHIN M. Effect of plant cellulose microfibers on hydration of cement composites[J]. Construction and Building Materials, 2021, 267: 121734. |