[1] LUO R Y, LIU T, LI J S, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J]. Carbon, 2004, 42(14): 2887-2895. [2] 李翠云,李辅安.碳/碳复合材料的应用研究进展[J].化工新型材料,2006,34(3):18-20. LI C Y, LI F A. Study on application of carbon/carbon composites[J]. New Chemical Materials, 2006, 34(3): 18-20 (in Chinese). [3] SU J M, ZHOU S J, LI R Z, et al. A review of carbon-carbon composites for engineering applications[J]. Carbon, 2015, 93: 1081. [4] 杨彩云,胡振英.三维机织C/C复合材料的摩擦磨损性能[J].中国有色金属学报,2009,19(1):70-76. YANG C Y, HU Z Y. Friction and wear properties of 3D woven reinforced C/C composites[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(1): 70-76 (in Chinese). [5] LU X F, XIAO P. Preparation of in situ grown silicon carbide nanofibers radially onto carbon fibers and their effects on the microstructure and flexural properties of carbon/carbon composites[J]. Carbon, 2013, 59: 176-183. [6] CHOY K L. Chemical vapour deposition of coatings[J]. Progress in Materials Science, 2003, 48(2): 57-170. [7] CHEN J X, HUANG B Y. Microstructure of carbon fiber preform and distribution of pyrolytic carbon by chemical vapor infiltration[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(4): 733-737. [8] 邹林华,黄 勇,黄伯云,等.C/C复合材料的显微结构及其与工艺、性能的关系[J].新型炭材料,2001,16(4):63-70. ZOU L H, HUANG Y, HUANG B Y, et al. The relationship among microstructures, processing parameters and properties for carbon-carbon composites[J]. New Carbon Materials, 2001, 16(4): 63-70 (in Chinese). [9] CHEN J X, XIONG X, HUANG Q Z, et al. Densification mechanism of chemical vapor infiltration technology for carbon/carbon composites[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(3): 519-522. [10] DELHAES P. Chemical vapor deposition and infiltration processes of carbon materials[J]. Carbon, 2002, 40(5): 641-657. [11] LI H J, XU G Z, LI K Z, et al. The infiltration process and texture transition of 2D C/C composites[J]. Journal of Materials Science & Technology, 2009, 25(1): 109-114. [12] 焦 华.BaTiO3/Ca10(PO4)6(OH)2纳米复合材料的可控制备及其陶瓷块体的性能研究[D].西安:西安理工大学,2018. JIAO H. Controllable preparation of BaTiO3/Ca10(PO4)6(OH)2 nanocomposites and research of its ceramic blocks[D]. Xi'an: Xi'an University of Technology, 2018 (in Chinese). [13] 鲍 婕,李盛涛,邹 晨.BaTiO3晶粒尺寸效应及其微观机理的研究进展[J].材料导报,2005(F05):143-146. BAO J, LI S T, ZOU C. Progress in research on size effect and its mechanism of BaTiO3[J]. Materials Review, 2005(F05): 143-146 (in Chinese). [14] 程忠俭,常玉普,陈英军.电子级高纯钛酸钡的生产[J].无机盐工业,2010,42(9):43-45. CHENG Z J, CHANG Y P, CHEN Y J. Production of electronic-grade high purity barium titanate[J]. Inorganic Chemicals Industry, 2010, 42(9): 43-45 (in Chinese). |