欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (3): 1012-1019.

• 陶瓷 • 上一篇    下一篇

Ce掺杂La0.7Sr0.3Cr0.5Fe0.5O3-δ材料的制备及其电化学性能

常宏1, 常香玉2, 苏世阳1, 陈绘丽2   

  1. 1.太原工业学院材料工程系,太原 030013;
    2.山西大学分子科学研究所,山西省能源转换与存储重点实验室,太原 237016
  • 收稿日期:2021-09-24 修回日期:2021-12-24 出版日期:2022-03-15 发布日期:2022-04-08
  • 作者简介:常 宏(1988—),男,博士。主要从事燃料电池及CO2电催化还原反应研究。E-mail:1281832410@qq.com
  • 基金资助:
    山西省基础研究计划青年项目(20210302124219);山西省高等学校科技创新项目(2021L546)

Preparation and Electrochemical Performance of Ce-Doped La0.7Sr0.3Cr0.5Fe0.5O3-δ Materials

CHANG Hong1, CHANG Xiangyu2, SU Shiyang1, CHEN Huili2   

  1. 1. Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030013, China;
    2. Key Lab Mat Energy Convers & Storage, Institute of Molecular Science, Shanxi University, Taiyuan 237016, China
  • Received:2021-09-24 Revised:2021-12-24 Online:2022-03-15 Published:2022-04-08

摘要: 近年来化石燃料大量消耗导致环境污染日益严重,固体氧化物电解池(SOEC)能够高效、环境友好地将CO2转化为CO等高附加值化学品,因此受到广泛关注。开发高效稳定的SOEC需要采用性能优异的电极材料,La0.7Sr0.3Cr0.5Fe0.5O3-δ(Sto-LSCrF)钙钛矿氧化物因其优异的氧化还原稳定性受到了高度重视。为进一步提高Sto-LSCrF燃料电极材料电解CO2的能力,在Sto-LSCrF的A位掺杂Ce来调控Ce0.08La0.62Sr0.3Cr0.5Fe0.5O3-δ(Ce-LSCrF)中可移动氧空穴含量以便提高其对CO2的吸附/活化能力,进而改善其电化学性能。同时对材料的相结构、氧空穴含量以及其对CO2的吸附/脱附能力进行详细的表征和分析。此外,我们还探究了Ce-LSCrF的电化学性能,发现与Sto-LSCrF相比,Ce-LSCrF燃料电极表现出较高的电解性能,也显示出较好的恒压稳定性,电解性能的增强归因于Ce-LSCrF晶格中较多的可移动氧空位可有效吸附/活化CO2,以上试验结果表明Ce-LSCrF是性能优异的CO2电解材料。

关键词: 固体氧化物电解池, 钙钛矿, 电解CO2, 氧空穴, 燃料电极, Ce掺杂

Abstract: In recent years, the massive consumption of fossil fuels has led to increasingly serious environmental pollution. Solid oxide electrolysis cell (SOEC) has attracted more and more attention because it can efficiently and environmentally convert CO2 into CO and other high value-added chemicals. Electrode materials with excellent performance are crucial to the development of efficient and stable SOEC. La0.7Sr0.3Cr0.5Fe0.5O3-δ(Sto-LSCrF)perovskite oxide has attracted widespread attention due to its excellent oxidation-reduction stability. In order to further improve the performance of Sto-LSCrF fuel electrode materials for CO2 electrolysis, the A-site doping Ce strategy in Sto-LSCrF was adopted to improve the content of mobile oxygen vacancies in Ce-LSCrF, so as to increase its adsorption and activation ability of CO2 and then enhance its electrochemistry properties. At the same time, the phase structure, oxygen vacancies content and CO2 adsorption and desorption capacity of the materials were characterized and analyzed in detail. In addition, the electrochemical performance of Ce-LSCrF was explored. Compared with Sto-LSCrF, Ce-LSCrF fuel electrode not only exhibits higher electrolysis performance, but also shows better constant voltage discharge stability. The enhancement of electrolytic performance is attributed to more mobile oxygen vacancies in Ce-LSCrF lattice that can effectively absorb and activate CO2. These results indicate that Ce-LSCrF is an excellent fuel electrode material for CO2 electrolysis in SOEC.

Key words: solid oxide electrolysis cell, perovskite oxide, electrolysis of CO2, oxygen vacancy, fuel electrode, Ce-doping

中图分类号: