[1] LEI L B, ZHANG J H, YUAN Z H, et al. Progress report on proton conducting solid oxide electrolysis cells[J]. Advanced Functional Materials, 2019, 29(37): 1903805. [2] LI Y H, LI Y, WAN Y H, et al. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances[J]. Advanced Energy Materials, 2019, 9(3): 1803156. [3] GRAVES C, EBBESEN S D, JENSEN S H, et al. Eliminating degradation in solid oxide electrochemical cells by reversible operation[J]. Nature Materials, 2015, 14(2): 239-244. [4] YE L, ZHANG M, HUANG P, et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures[J]. Nature Communications, 2017, 8: 14785. [5] LI T P, WANG T P, WEI T, et al. Robust anode-supported cells with fast oxygen release channels for efficient and stable CO2 electrolysis at ultrahigh current densities[J]. Small, 2021, 17(6): 2007211. [6] SONG Y F, ZHANG X M, XIE K, et al. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects[J]. Advanced Materials, 2019, 31(50): 1902033. [7] SONG Y F, ZHOU Z W, ZHANG X M, et al. Pure CO2 electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell[J]. Journal of Materials Chemistry A, 2018, 6(28): 13661-13667. [8] TAO Y K, EBBESEN S D, MOGENSEN M B. Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities[J]. Journal of Power Sources, 2016, 328: 452-462. [9] GRAVES C, EBBESEN S D, MOGENSEN M. Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability[J]. Solid State Ionics, 2011, 192(1): 398-403. [10] LI Y H, LI P, HU B B, et al. A nanostructured ceramic fuel electrode for efficient CO2/H2O electrolysis without safe gas[J]. Journal of Materials Chemistry A, 2016, 4(23): 9236-9243. [11] ISHIHARA T, WANG S J, WU K T. Highly active oxide cathode of La(Sr)Fe(Mn)O3 for intermediate temperature CO2 and CO2-H2O co-electrolysis using LSGM electrolyte[J]. Solid State Ionics, 2017, 299: 60-63. [12] LI Z, LI S S, TSENG C J, et al. Redox-reversible perovskite ferrite cathode for high temperature solid oxide steam electrolyser[J]. Electrochimica Acta, 2017, 229: 48-54. [13] QI W T, GAN Y, YIN D, et al. Remarkable chemical adsorption of manganese-doped titanate for direct carbon dioxide electrolysis[J]. Journal of Materials Chemistry A, 2014, 2(19): 6904-6915. [14] YUE X L, IRVINE J T S. Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells[J]. Journal of the Electrochemical Society, 2012, 159(8): F442-F448. [15] SUN Y F, LI J H, CHUANG K T, et al. Electrochemical performance and carbon deposition resistance of Ce-doped La0.7Sr0.3Fe0.5Cr0.5O3-δ anode materials for solid oxide fuel cells fed with syngas[J]. Journal of Power Sources, 2015, 274: 483-487. [16] LIU S B, LIU Q X, LUO J L. CO2 to CO conversion on layered perovskite with in situ exsolved Co-Fe alloy nanoparticles: an active and stable cathode for solid oxide electrolysis cells[J]. Journal of Materials Chemistry A, 2016, 4(44): 17521-17528. [17] ZHANG Y Q, LI J H, SUN Y F, et al. Highly active and redox-stable Ce-doped LaSrCrFeO-based cathode catalyst for CO2 SOECs[J]. ACS Applied Materials & Interfaces, 2016, 8(10): 6457-6463. [18] SUN Y F, LI J H, WANG M N, et al. A-site deficient chromite perovskite with in situ exsolution of nano-Fe: a promising bi-functional catalyst bridging the growth of CNTs and SOFCs[J]. Journal of Materials Chemistry A, 2015, 3(28): 14625-14630. [19] ZHOU Y J, ZHOU Z W, SONG Y F, et al. Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell[J]. Nano Energy, 2018, 50: 43-51. [20] LI Y H, CHEN X R, YANG Y, et al. Mixed-conductor Sr2Fe1.5Mo0.5O6-δ as robust fuel electrode for pure CO2 reduction in solid oxide electrolysis cell[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11403-11412. [21] GUO T, DONG X, SHIROLKAR M M, et al. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16131-16139. [22] SUN Y F, ZHANG Y Q, CHEN J, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Letters, 2016, 16(8): 5303-5309. [23] ZHANG X M, LIU L, ZHAO Z, et al. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode[J]. Nano Letters, 2015, 15(3): 1703-1709. [24] WANG S, DENG S, HAO Z, et al. Ca/Cu co-doped SmFeO3 as a fuel electrode material for direct electrolysis of CO2 in SOECs[J]. Fuel Cells, 2020, 20(6): 682-689. [25] LIU S B, LIU Q X, LUO J L. Highly stable and efficient catalyst with in situ exsolved Fe-Ni alloy nanospheres socketed on an oxygen deficient perovskite for direct CO2 electrolysis[J]. ACS Catalysis, 2016, 6(9): 6219-6228. |