[1] OJOVAN M I, LEE W E. An introduction to nuclear waste immobilisation[M]. 2nd ed. Amsterdam: Elsevier, 2005. [2] GIN S, ABDELOUAS A, CRISCENTI L J, et al. An international initiative on long-term behavior of high-level nuclear waste glass[J]. Materials Today, 2013, 16(6): 243-248. [3] 徐 凯.核废料玻璃固化国际研究进展[J].中国材料进展,2016,35(7):481-488+517. XU K. Review of international research progress on nuclear waste vitrification[J]. Materials China, 2016, 35(7): 481-488+517 (in Chinese). [4] GOEL A, MCCLOY J S, POKORNY R, et al. Challenges with vitrification of Hanford high-level waste (HLW) to borosilicate glass-an overview[J]. Journal of Non-Crystalline Solids: X, 2019, 4: 100033. [5] VERNAZ É, BRUEZIÈRE J. History of nuclear waste glass in France[J]. Procedia Materials Science, 2014, 7: 3-9. [6] MARCIAL J, CHUN J, HRMA P, et al. Effect of bubbles and silica dissolution on melter feed rheology during conversion to glass[J]. Environmental Science & Technology, 2014, 48(20): 12173-12180. [7] GUILLEN D P, LEE S, HRMA P, et al. Evolution of chromium, manganese and iron oxidation state during conversion of nuclear waste melter feed to molten glass[J]. Journal of Non-Crystalline Solids, 2020, 531: 119860. [8] MARCIAL J, KLOUEK J, VERNEROVÁ M, et al. Effect of Al and Fe sources on conversion of high-level nuclear waste feed to glass[J]. Journal of Nuclear Materials, 2022, 559: 153423. [9] MONTEIRO A, SCHULLER S, TOPLIS M J, et al. Chemical and mineralogical modifications of simplified radioactive waste calcine during heat treatment[J]. Journal of Nuclear Materials, 2014, 448(1/2/3): 8-19. [10] XU K, HRMA P, RICE J, et al. Melter feed reactions at T≤700 ℃ for nuclear waste vitrification[J]. Journal of the American Ceramic Society, 2015, 98(10): 3105-3111. [11] XU K, HRMA P, RICE J A, et al. Conversion of nuclear waste to molten glass: cold-cap reactions in crucible tests[J]. Journal of the American Ceramic Society, 2016, 99(9): 2964-2970. [12] WORRALL A. Core and fuel technologies in integral pressurized water reactors (iPWRs)[M]//CARELLI M D, INGERSOLL D T. Handbook of small modular nuclear reactors (second edition). Cambridge: Woodhead Publishing, 2021: 69-93. [13] 李 争,李泉鑫,张 华,等.蔗糖脱硝对模拟动力堆高放废液煅烧产物性能及结构的影响[J].原子能科学技术,2022,56(3):434-442. LI Z, LI Q X, ZHANG H, et al. Effect of denitration with sucrose on property and structure of calcinate of simulated PWR high-level liquid waste[J]. Atomic Energy Science and Technology, 2022, 56(3): 434-442 (in Chinese). [14] LI H, CHARPENTIER T, DU J C, et al. Composite reinforcement: recent development of continuous glass fibers[J]. International Journal of Applied Glass Science, 2017, 8(1): 23-36. [15] ZHU H Z, WANG F, LIAO Q L, et al. Structure features, crystallization kinetics and water resistance of borosilicate glasses doped with CeO2[J]. Journal of Non-Crystalline Solids, 2019, 518: 57-65. [16] KIM M, HA M G, UM W, et al. Relationship between leaching behavior and glass structure of calcium-aluminoborate waste glasses with various La2O3 contents[J]. Journal of Nuclear Materials, 2020, 539: 152331. [17] BAEK J Y, SHIN S H, KIM S H, et al. Thermal history driven molecular structure transitions in alumino-borosilicate glass[J]. Journal of the American Ceramic Society, 2018, 101(8): 3271-3275. [18] EL-DAMRAWI G, EL-EGILI K. Characterization of novel CeO2-B2O3 glasses, structure and properties[J]. Physica B: Condensed Matter, 2001, 299(1/2): 180-186. [19] 谭盛恒,HAND R J.钼酸盐在硼硅酸盐玻璃体系中的溶解[J].中国材料进展,2016,35(7):496-503+517. TAN S H, HAND R J. Dissolution of molybdate anions in borosilicate glasses for nuclear waste vitrification use[J]. Materials China, 2016, 35(7): 496-503+517 (in Chinese). [20] BREHAULT A, PATIL D, KAMAT H, et al. Compositional dependence of solubility/retention of molybdenum oxides in aluminoborosilicate-based model nuclear waste glasses[J]. The Journal of Physical Chemistry B, 2018, 122(5): 1714-1729. |