[1] 林鸿宾,陆万顺.电磁屏蔽原理及电磁屏蔽玻璃[J].玻璃,2008,35(3):39-42. LIN H B, LU W S. Principle of electromagnetic shield and electromagnetic shielding glass[J]. Glass, 2008, 35(3): 39-42 (in Chinese). [2] 周琳琳.窗用电磁屏蔽波导玻璃[J].玻璃,2019,46(2):46-48. ZHOU L L. Waveguide glass for windows with electromagnetic shielding[J]. Glass, 2019, 46(2): 46-48 (in Chinese). [3] 伏开虎,何 坤.中国建材总院科技在行动:电子系统稳定工作的“门神”:电磁屏蔽玻璃[J].中国建材,2018,67(11):118-120. FU K H, HE K. The God of door in electronic stability, the electromagnetic shielding glass[J]. China Building Materials, 2018, 67(11): 118-120 (in Chinese). [4] 陈玮君,郑 凯,张贵恩.宽频电磁屏蔽材料的研究现状[J].安全与电磁兼容,2020(3):95-97. CHEN W J, ZHENG K, ZHANG G E. Research status of broadband electromagnetic shielding materials[J]. Security and Electromagnetic Compatibility, 2020(3): 95-97 (in Chinese). [5] TAN D C, JIANG C M, LI Q K, et al. Development and current situation of flexible and transparent EM shielding materials[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(21): 25603-25630. [6] OSIPKOV A, MAKEEV M, GARSIYA E, et al. Radio-shielding metamaterials transparent in the visible spectrum: approaches to creation[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1060(1): 012007. [7] 刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料[M].2版.北京:化学工业出版社,2013:59-61. LIU S H, LIU J M, DONG X L, et al. Electromagnetic wave shielding and absorbing materials[M]. 2nd ed. Beijing: Chemical Industry Press, 2013: 59-61 (in Chinese). [8] 袁林生,沈晓冬,崔 升,等.透明屏蔽材料的研究现状及展望[J].兵器材料科学与工程,2007,30(2):82-84. YUAN L S, SHEN X D, CUI S, et al. Progress and prospect of transparent and electromagnetic shielding material[J]. Ordnance Material Science and Engineering, 2007, 30(2): 82-84 (in Chinese). [9] ZHANG C, JI C G, PARK Y B, et al. Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications[J]. Advanced Optical Materials, 2021, 9(3): 2001298. [10] HAN Y, LIU Y X, HAN L, et al. High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding[J]. Carbon, 2017, 115: 34-42. [11] RAY B, PARMAR S, DATE K, et al. Optically transparent polymer composites: a study on the influence of filler/dopant on electromagnetic interference shielding mechanism[J]. Journal of Applied Polymer Science, 2021, 138(16): 50255. [12] WANG H Y, JI C G, ZHANG C, et al. Highly transparent and broadband electromagnetic interference shielding based on ultrathin doped Ag and conducting oxides hybrid film structures[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11782-11791. [13] ERDOGAN N, ERDEN F, ASTARLIOGLU A T, et al. ITO/Au/ITO multilayer thin films on transparent polycarbonate with enhanced EMI shielding properties[J]. Current Applied Physics, 2020, 20(4): 489-497. [14] PARK J S, LEE S S, PARK I K. Visible and IR transparent Co-doped SnO2 thin films with efficient electromagnetic shielding performance[J]. Journal of Alloys and Compounds, 2020, 815: 152480. [15] FERNANDES G E, LEE D J, KIM J H, et al. Infrared and microwave shielding of transparent Al-doped ZnO superlattice grown via atomic layer deposition[J]. Journal of Materials Science, 2013, 48(6): 2536-2542. [16] YUAN C W, HUANG J H, DONG Y X, et al. Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave Fabry-Pérot interference and optical antireflection[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26659-26669. [17] WANG H Y, ZHANG Y L, JI C G, et al. Transparent perfect microwave absorber employing asymmetric resonance cavity[J]. Advanced Science, 2019, 6(19): 1901320. [18] LIANG Z C, ZHAO Z Y, PU M B, et al. Metallic nanomesh for high-performance transparent electromagnetic shielding[J]. Optical Materials Express, 2020, 10(3): 796-806. [19] LU Z G, WANG H Y, TAN J B, et al. Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh[J]. Applied Physics Letters, 2014, 105(24): 241904. [20] LU Z G, TAN J B. Analysis of transmitting characteristics of high-transparency double-layer metallic meshes with submillimeter period using an analytical model[J]. Applied Optics, 2008, 47(29): 5519-5526. [21] ZHANG Y Q, DONG H X, LI Q S, et al. Double-layer metal mesh etched by femtosecond laser for high-performance electromagnetic interference shielding window[J]. RSC Advances, 2019, 9(39): 22282-22287. [22] HAN Y, ZHONG H, LIU N, et al. In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding[J]. Advanced Electronic Materials, 2018, 4(11): 1800156. [23] SHI K, SU J H, HU K, et al. High-performance copper mesh for optically transparent electromagnetic interference shielding[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(14): 11646-11653. [24] 陆振刚.基于圆环和双层金属网栅结构的光学窗电磁屏蔽方法研究[D].哈尔滨:哈尔滨工业大学,2007:36-49. LU Z G. Electromagnetic shielding methods for optical windows based on ring and double-layer metallic meshes[D]. Harbin: Harbin Institute of Technology, 2007: 36-49 (in Chinese). [25] TAN J B, LU Z G. Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light[J]. Optics Express, 2007, 15(3): 790-796. [26] LU Z G, WANG H Y, TAN J B, et al. Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays[J]. Optics Letters, 2016, 41(9): 1941-1944. [27] WANG H, LU Z, TAN J. Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays[J]. Optics Express, 2016, 24(20): 22989-23000. [28] LU Z G, LIU Y S, WANG H Y, et al. Optically transparent frequency selective surface based on nested ring metallic mesh[J]. Optics Express, 2016, 24(23): 26109-26118. [29] WANG H Y, LU Z G, LIU Y S, et al. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding[J]. Optics Letters, 2017, 42(8): 1620-1623. [30] WANG H Y, LU Z G, TAN J B, et al. Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding[J]. Thin Solid Films, 2018, 662: 76-82. [31] WANG W Q, BAI B F, ZHOU Q, et al. Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction[J]. Optical Materials Express, 2018, 8(11): 3485. [32] XU X M, LIN Z X, WANG S H, et al. Analysis of the effect on shielding effectiveness of the rotation angle in multi-ring metallic meshes[J]. IEEE Microwave and Wireless Components Letters, 2020, 99: 1-4. [33] HAN Y, LIN J, LIU Y X, et al. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding[J]. Scientific Reports, 2016, 6: 25601. [34] WALIA S, SINGH A K, RAO V S G, et al. Metal mesh-based transparent electrodes as high-performance EMI shields[J]. Bulletin of Materials Science, 2020, 43(1): 1-8. [35] VORONIN A S, FADEEV Y V, GOVORUN I V, et al. Cu-Ag and Ni-Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance[J]. Journal of Materials Science, 2021, 56(26): 14741-14762. [36] JIANG Z Y, ZHAO S Q, HUANG W B, et al. Embedded flexible and transparent double-layer nickel-mesh for high shielding efficiency[J]. Optics Express, 2020, 28(18): 26531-26542. [37] JIANG Z Y, HUANG W B, CHEN L S, et al. Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding[J]. Optics Express, 2019, 27(17): 24194-24206. [38] KIM M H, JOH H, HONG S H, et al. Coupled Ag nanocrystal-based transparent mesh electrodes for transparent and flexible electro-magnetic interference shielding films[J]. Current Applied Physics, 2019, 19(1): 8-13. [39] TRAN V V, NGUYEN D D, NGUYEN A T, et al. Electromagnetic interference shielding by transparent graphene/nickel mesh films[J]. ACS Applied Nano Materials, 2020, 3(8): 7474-7481. [40] MA L M, LU Z G, TAN J B, et al. Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 34221-34229. [41] LU Z G, MA L M, TAN J B, et al. Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing[J]. 2D Materials, 2017, 4(2): 025021. [42] PHAN D T, JUNG C W. Multilayered salt water with high optical transparency for EMI shielding applications[J]. Scientific Reports, 2020, 10: 21549. [43] PHAN D T, JUNG C W. Optically transparent and very thin structure against electromagnetic pulse (EMP) using metal mesh and saltwater for shielding windows[J]. Scientific Reports, 2021, 11: 2603. [44] ZHANG Y Q, DONG H X, MOU N L, et al. High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber[J]. Optics Express, 2020, 28(18): 26836-26849. [45] ZHOU Q, YIN X W, YE F, et al. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure[J]. Applied Physics A, 2019, 125(2): 1-8. [46] WANG Z X, JIAO B, QING Y C, et al. Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2826-2834. [47] ZHANG N, WANG Z, SONG R G, et al. Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness[J]. Science Bulletin, 2019, 64(8): 540-546. [48] ZHOU B, SU M J, YANG D Z, et al. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40859-40869. [49] CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding[J]. ACS Nano, 2020: 2020 Jun 1. [50] ZHU X Z, XU J, QIN F, et al. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires[J]. Nanoscale, 2020, 12(27): 14589-14597. [51] GU J H, HU S W, JI H J, et al. Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding[J]. Nanotechnology, 2020, 31(18): 185303. [52] YANG Y, CHEN S, LI W L, et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding[J]. ACS Nano, 2020, 14(7): 8754-8765. [53] LIANG X W, ZHOU J W, LI G, et al. In-situ redox nanowelding of copper nanowires with surficial oxide layer as solder for flexible transparent electromagnetic interference shielding[C]//2019 IEEE 69th Electronic Components and Technology Conference. Las Vegas, NV, USA. IEEE, 2019: 746-752. [54] HOSSEINI E, ARJMAND M, SUNDARARAJ U, et al. Filler-free conducting polymers as a new class of transparent electromagnetic interference shields[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28596-28606. [55] 李振亚,张建华,杨文凯.基于超材料和FSS的全频微带天线RCS减缩[J].航天电子对抗,2015,31(4):46-48+64. LI Z Y, ZHANG J H, YANG W K. RCS reduction of the microstrip antenna based on metamaterial and FSS[J]. Aerospace Electronic Warfare, 2015, 31(4): 46-48+64 (in Chinese). [56] 夏 靖,金湾湾,刘 钢,等.双侧吸波频率选择表面窗口吸波体设计[J].现代信息科技,2021,5(15):89-91. XIA J, JIN W W, LIU G, et al. Design of bilateral wave absorbing frequency selective surface window absorber[J]. Modern Information Technology, 2021, 5(15): 89-91 (in Chinese). [57] 夏 靖.频率选择表面窗口吸收体的设计与分析研究[D].武汉:华中科技大学,2019:4-10. XIA J. Analysis and design of frequency selective surface absorbers[D]. Wuhan: Huazhong University of Science and Technology, 2019: 4-10 (in Chinese). [58] 白正元,姜雄伟,张 龙.超薄电磁屏蔽光窗超材料吸波器[J].光学学报,2017,37(8):0816003. BAI Z Y, JIANG X W, ZHANG L. Ultra-thin metamaterial absorber for electromagnetic window shielding[J]. Acta Optica Sinica, 2017, 37(8): 0816003 (in Chinese). |