硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (11): 4003-4020.
所属专题: 玻璃
石晓飞, 侯焕然, 金扬利, 黄友奇, 王衍行, 祖成奎
收稿日期:
2022-08-05
修订日期:
2022-09-13
出版日期:
2022-11-15
发布日期:
2022-12-12
通信作者:
祖成奎,博士,教授级高级工程师。E-mail:zuchengkui@cbma.com.cn
作者简介:
石晓飞(1988—),女,博士研究生。主要从事屏蔽隐身玻璃的研究。E-mail:shi_xiaofeifei@163.com
SHI Xiaofei, HOU Huanran, JIN Yangli, HUANG Youqi, WANG Yanhang, ZU Chengkui
Received:
2022-08-05
Revised:
2022-09-13
Online:
2022-11-15
Published:
2022-12-12
摘要: 雷达波测防与抗电磁干扰在军事和社会生活中需求迫切,基于透明应用的屏蔽隐身与光学透明兼容技术成为该需求牵引的重点研究方向之一。本文概述了近年来透明电磁波屏蔽隐身技术的研究现状,介绍了铟锡氧化物(ITO)及其复合材料、金属网栅、超材料、水基材料等新型透明吸波材料的结构,分析了材料的优势特点及不足,并对这几种材料在透明屏蔽隐身领域的未来发展进行了讨论和展望。
中图分类号:
石晓飞, 侯焕然, 金扬利, 黄友奇, 王衍行, 祖成奎. 雷达波屏蔽隐身与光学透明兼容技术研究进展[J]. 硅酸盐通报, 2022, 41(11): 4003-4020.
SHI Xiaofei, HOU Huanran, JIN Yangli, HUANG Youqi, WANG Yanhang, ZU Chengkui. Research Progress of Compatibility Technology of Radar Shielding Stealth and Optical Transparency[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(11): 4003-4020.
[1] WANG Q, SUN L N, HU C W, et al. Research of novel functional stealthy nanomaterials[J]. Advanced Materials Research, 2012, 534: 73-77. [2] 陈天航,郑 斌,钱 超,等.新型电磁波隐身研究进展[J].物理学报,2020,69(15):46-62. CHEN T H, ZHENG B, QIAN C, et al. Progress of novel electromagnetics cloaking research[J]. Acta Physica Sinica, 2020, 69(15): 46-62 (in Chinese). [3] RAMYA K. Radar absorbing material (RAM)[J]. Applied Mechanics and Materials, 2013, 390: 450-453. [4] RAO G A, MAHULIKAR S P. Integrated review of stealth technology and its role in airpower[J]. The Aeronautical Journal, 2022, 2751: 629-641. [5] STADLER A. Transparent conducting oxides-an up-to-date overview[J]. Materials (Basel, Switzerland), 2012, 5(4): 661-683. [6] HAN Y, ZHONG H, LIU N, et al. In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding[J]. Advanced Electronic Materials, 2018, 4(11): 1800156. [7] SANNICOLO T, LAGRANGE M, CABOS A, et al. Metallic nanowire-based transparent electrodes for next generation flexible devices: a review[J]. Small (Weinheim an Der Bergstrasse, Germany), 2016, 12(44): 6052-6075. [8] KWON H, D'AGUANNO G, ALÚ A. Optically transparent microwave absorber based on water-based moth-eye structures[J]. Optics Express, 2021, 29(6): 9190-9198. [9] DA YI, WEI X C, LIN S S, et al. Transparent microwave absorber based on single layer graphene film[C]//2015 Asia-Pacific Microwave Conference (APMC). Nanjing: IEEE, 1-3. [10] 刘 伟,贾 琨,谷建宇,等.Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J].材料导报,2022,36(9):31-35. LIU W, JIA K, GU J Y, et al. The preparation of Ag/graphene composite film for thermal conduction and electromagnetic interference shielding[J]. Materials Reports, 2022, 36(9): 31-35 (in Chinese). [11] HUANG S N, FAN Q, WANG J F, et al. Multi-spectral metasurface with high optical transparency, low infrared surface emissivity, and wideband microwave absorption[J]. Frontiers in Physics, 2020, 8: 385. [12] GAO Z Q, FAN Q, TIAN X X, et al. An optically transparent broadband metamaterial absorber for radar-infrared bi-stealth[J]. Optical Materials, 2021, 112: 110793. [13] ZHANG C, CHENG Q. Opticalliy transparent metamaterial for broadband millimeter wave absorption[C]//2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT). Liverpool: IEEE, 1-4. [14] XU C L, WANG B K, YAN M B, et al. An optical-transparent metamaterial for high-efficiency microwave absorption and low infrared emission[J]. Journal of Physics D: Applied Physics, 2020, 53(13): 135109. [15] LIU R, ZHANG B Z, DUAN J P, et al. Composite structure-based transparent ultra-broadband metamaterial absorber with multi-applications[J]. Materials Research Express, 2020, 7(4): 045803. [16] HAO J X, ZHANG B Z, JING H H, et al. A transparent ultra-broadband microwave absorber based on flexible multilayer structure[J]. Optical Materials, 2022, 128: 112173. [17] LU X R, CHEN J, PENG Z H, et al. An optically transparent and ultra-wideband absorber based on multi-layer structure[C]//2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). Taiyuan: IEEE, 1-3. [18] LU X R, CHEN J, HUANG Y Q, et al. Design of ultra-wideband and transparent absorber based on resistive films[J]. ACES Journal, 2019, 34(5): 765-770. [19] SHEOKAND H, SINGH G, GHOSH S, et al. An optically transparent broadband microwave absorber using interdigital capacitance[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 113-117. [20] ZHANG L, SHI Y, YANG J X, et al. Broadband transparent absorber based on indium tin oxide-polyethylene terephthalate film[J]. IEEE Access, 2019,7: 137848-137855. [21] ZHANG C L, WU X Y, HUANG C, et al. Flexible and transparent microwave-infrared bistealth structure[J]. Advanced Materials Technologies, 2019, 4(8): 1900063. [22] HU X R, WANG Y, WAN Z H, et al. Design and analysis of an optically transparent ultra-wideband absorber covering C-, X-, Ku-, K-, Ka- bands[J]. Optical Materials Express, 2022, 12(4): 1512. [23] ZHOU Q, YIN X W, YE F, et al. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure[J]. Applied Physics A, 2019, 125(2): 1-8. [24] LIU Y, ZHOU J B, CHANG Q, et al. Transparent and electrically tunable electromagnetic wave absorbing metamaterial[J]. Applied Physics Letters, 2022, 120(9): 094101. [25] XU C L, WANG B K, YAN M B, et al. An optically transparent sandwich structure for radar-infrared bi-stealth[J]. Infrared Physics & Technology, 2020, 105: 103108. [26] SONG Z C, MIN P P, YANG L, et al. High optical transparent wideband microwave absorber[C]//2021 IEEE 4th International Conference on Electronic Information and Communication Technology. Xi'an: IEEE, 391-393. [27] TAYDE Y, CHAUDHARY K, SINGH G, et al. An optically transparent and flexible microwave absorber for X and Ku bands application[J]. Microwave and Optical Technology Letters, 2020, 62(5): 1850-1859. [28] LI S Y, ZHAO Y F, JIANG Y Y, et al. An optically transparent broadband metamaterial absorber for C-, X- and Ku- bands[C]//2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC). Fuzhou: IEEE, 1-3. [29] YANG J X, XIAO L, CHEN J F. A transparent broadband absorbing metamaterial based on ITO structure[J]. 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2020: 1-3. [30] 刘战合,王 菁,王晓璐,等.铌掺杂ITO镀膜玻璃电磁散射特性试验[J].航空工程进展,2018,9(1):62-68. LIU Z H, WANG J, WANG X L, et al. Experiment on electromagnetic scattering characteristics of Nb-doped ITO coated glass[J]. Advances in Aeronautical Science and Engineering, 2018, 9(1): 62-68 (in Chinese). [31] 明平美,吕珍斌,李松昭.精细金属网栅的制造方法及其研究进展[J].航空精密制造技术,2013,49(2):8-11. MING P M, LV Z B, LI S Z. Manufacturing technology of fine metal sieve and research progress[J]. Aviation Precision Manufacturing Technology, 2013, 49(2): 8-11 (in Chinese). [32] JAROSZEWSKI M, THOMAS S, RANE A V. Advanced materials for electromagnetic shielding[M]. Hoboken: John Wiley & Sons, Inc., 2018. [33] 周贺飞,兰红波,李红珂,等.基于电场驱动喷射沉积微尺度3D打印制造金属网栅透明电磁屏蔽玻璃的研究[J].机械工程学报,2019,55(15):56-63. ZHOU H F, LAN H B, LI H K, et al. Metal-mesh transparent EMI shielding glass fabricated by electric-field-driven jet deposition micro-scale 3D printing[J]. Journal of Mechanical Engineering, 2019, 55(15): 56-63 (in Chinese). [34] 王 建,徐均琪,苏俊宏,等.金属网栅电磁屏蔽窗口薄膜的设计与制备[J].激光与红外,2020,50(3):327-332. WANG J, XU J Q, SU J H, et al. Design and preparation of metal grid electromagnetic shielding window film[J]. Laser & Infrared, 2020, 50(3): 327-332 (in Chinese). [35] LEE I G, YOON S H, LEE J S, et al. Design of wideband radar absorbing material with improved optical transmittance by using printed metal-mesh[J]. Electronics Letters, 2016, 52(7): 555-557. [36] 冯晓国,张 舸,汤 洋.薄膜型金属网栅的电磁屏蔽特性[J].光学精密工程,2015,23(3):686-691. FENG X G, ZHANG G, TANG Y. Electromagnetic shielding properties of metallic mesh coatings[J]. Optics and Precision Engineering, 2015, 23(3): 686-691 (in Chinese). [37] 马志梅,马富花,李继红,等.碳纳米管对金属网栅电磁屏蔽效能及可视性的影响[J].表面技术,2014,43(3):101-104. MA Z M, MA F H, LI J H, et al. Influence of carbon nanotubes on the shielding effectiveness and visibility of metal shield[J]. Surface Technology, 2014, 43(3): 101-104 (in Chinese). [38] JIANG Z Y, CHEN T Y, ZHAO Y Y, et al. A flexible and visible transparent MXene-mesh film for radar stealth in X-band[J]. 2019 Asia Communications and Photonics Conference (ACP), 2019, paper M4A, 305. [39] 肖宗湖,王新莲,韩 春,等.裂纹模板法制备的金属网栅透明导电薄膜光电性能[J].新余学院学报,2018,23(1):1-5. XIAO Z H, WANG X L, HAN C, et al. Photoelectric properties of transparent conductive metal mesh prepared by crack template[J]. Journal of Xinyu University, 2018, 23(1): 1-5 (in Chinese). [40] ZHANG J, LI Z F, SHAO L D, et al. Dynamical absorption manipulation in a graphene-based optically transparent and flexible metasurface[J]. Carbon, 2021, 176: 374-382. [41] JEONG H, TENTZERIS M M, LIM S. Optically transparent metamaterial absorber using inkjet printing technology[J]. Materials, 2019, 12(20): 3406. [42] ONN HOO G Y, SOH C B, YANG R B, et al. Optically transparent film of BaTiO3-TiO2 and Fe3O4-TiO2 on acrylic substrate with water vapor treatment[J]. Procedia Engineering, 2017, 216: 71-78. [43] SOH C B, NG O T, LIM S W Y. Optically transparent titanium dioxide based coating with anti-reflectance properties in the GigaHertz frequency spectrum for drones[C]//2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Sapporo/APEMC). Sapporo: IEEE, 1-4. [44] SONG W L, ZHANG Y J, ZHANG K L, et al. Ionic conductive gels for optically manipulatable microwave stealth structures[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2019, 7(2): 1902162. [45] 邹 楠,易 韵,薛淑云,等.一种液控可调透明吸波结构[J].微波学报,2021,37(5):73-76+86. ZOU N, YI Y, XUE S Y, et al. A liquid controlled adjustable transparent absorbing structure[J]. Journal of Microwaves, 2021, 37(5): 73-76+86 (in Chinese). [46] SAFARI M, HE Y C, KIM M, et al. Optically and radio frequency (RF) transparent meta-glass[J]. Nanophotonics, 2020, 9(12): 3889-3898. [47] LI W W, SHAMIM A. Silver nanowires based transparent, broadband FSS microwave absorber[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). Krakow: IEEE, 1-3. [48] CHOI I, LEE D, LEE D G. Radar absorbing composite structures dispersed with nano-conductive particles[J]. Composite Structures, 2015, 122: 23-30. [49] JING H B, MA Q, BAI G D, et al. Optically transparent coding metasurfaces based on indium tin oxide films[J]. Journal of Applied Physics, 2018, 124(2): 023102. [50] MIN P P, SONG Z C, YANG L, et al. Optically transparent flexible broadband metamaterial absorber based on topology optimization design[J]. Micromachines, 2021, 12(11): 1419. [51] LUO Y, HUANG L R, DING J F, et al. Flexible and transparent broadband microwave metasurface absorber based on multipolar interference engineering[J]. Optics Express, 2022, 30(5): 7694-7707. [52] ZHANG C, CHENG Q, YANG J, et al. Broadband metamaterial for optical transparency and microwave absorption[J]. Applied Physics Letters, 2017, 110(14): 143511. [53] VENKATARAYALU N V, LEE W W, TAN D, et al. Effect of resistivity of ITO thin film when used in transparent checkerboard surfaces for RCS reduction[C]//2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL). Singapore: IEEE, 473-476. [54] LAI S F, GUO Y P, LIU G Y, et al. A high-performance ultra-broadband transparent absorber with a patterned ITO metasurface[J]. IEEE Photonics Journal, 2022, 14(3): 1-7. [55] MA Y, SHI L H, WANG J B, et al. A transparent and flexible metasurface with both low infrared emission and broadband microwave absorption[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 2001-2010. [56] ZHONG S M, WU L J, LIU T J, et al. Transparent transmission-selective radar-infrared bi-stealth structure[J]. Optics Express, 2018, 26(13): 16466-16476. [57] DENG R X, LI M L, MUNEER B, et al. Theoretical analysis and design of ultrathin broadband optically transparent microwave metamaterial absorbers[J]. Materials (Basel, Switzerland), 2018, 11(1): 107. [58] BHARDWAJ A, SINGH G, SRIVASTAVA K V, et al. Polarization-insensitive optically transparent microwave metamaterial absorber using a complementary layer[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(1): 163-167. [59] MA Y, WANG J B, SHI L H, et al. Ultra-wideband, optically transparent, and flexible microwave metasurface absorber[J]. Optical Materials Express, 2021, 11(7): 2206. [60] 肖 桐,田昌会,徐翠莲,等.一体化光学透明红外与雷达兼容隐身复合超表面[J].光子学报,2022,51(1):269-277. XIAO T, TIAN C H, XU C L, et al. Integrated design of optically transparent composite for low infrared emission and wideband microwave absorption metasurface[J]. Acta Photonica Sinica, 2022, 51(1): 269-277 (in Chinese). [61] 李小秋,冯晓国,高劲松.光学透明频率选择表面的研究[J].物理学报,2008,57(5):3193-3197. LI X Q, FENG X G, GAO J S. Optically transparent band-pass frequency selective surface[J]. Acta Physica Sinica, 2008, 57(5): 3193-3197 (in Chinese). [62] HUANG S N, FAN Q, XU C L, et al. Multiple working mechanism metasurface with high optical transparency, low infrared emissivity and microwave reflective reduction[J]. Infrared Physics & Technology, 2020, 111: 103524. [63] TAN X X, CHEN J, LI J X. A thin and optically transparent infrared-radar compatible stealth structure with low emissivity and broadband absorption[J]. Journal of Physics D: Applied Physics, 2022, 55(7): 075104. [64] XIE X Y, LI F F, FANG W, et al. An optically transparent broadband microwave absorber based on resistive frequency selective surface[C]//2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Chengdu: IEEE, 1-3. [65] 李莉霞,李荣强,王 彪,等.柔性超薄吸透一体化电磁窗结构设计[J].光学学报,2019,39(12):1223005. LI L X, LI R Q, WANG B, et al. Design of transmission-absorption-integrated electromagnetic window with flexibility and ultrathin thickness[J]. Acta Optica Sinica, 2019, 39(12): 1223005 (in Chinese). [66] YUAN Q, JIANG J M, LI Y F, et al. The compatible method of designing the transparent ultra-broadband radar absorber with low infrared emissivity[J]. Infrared Physics & Technology, 2022, 123: 104114. [67] GAO Z Q, XU C L, TIAN X X, et al. Multifunctional ultra-thin metasurface with low infrared emissivity, microwave absorption and high optical transmission[J]. Optics Communications, 2021, 500: 127327. [68] MENG F G, LI H, FAN D G, et al. Transmitting-absorbing material based on resistive metasurface[J]. AIP Advances, 2018, 8(7): 075008. [69] 张 建,高劲松,徐念喜.光学透明频率选择表面的设计研究[J].物理学报,2013,62(14):147304. ZHANG J, GAO J S, XU N X. Design and study of optically transparent band-pass frequency selective surface[J]. Acta Physica Sinica, 2013, 62(14): 147304 (in Chinese). [70] GOGOI D J, BHATTACHARYYA N S. Microwave metamaterial absorber based on aqueous electrolyte solution for X-band application[J]. Journal of Applied Physics, 2019, 125(12): 125107. [71] PANG Y Q, WANG J F, CHENG Q, et al. Thermally tunable water-substrate broadband metamaterial absorbers[J]. Applied Physics Letters, 2017, 110(10): 104103. [72] YOO Y J, JU S, PARK S Y, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets[J]. Scientific Reports, 2015, 5: 14018. [73] PANG Y Q, SHEN Y, LI Y F, et al. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption[J]. Journal of Applied Physics, 2018, 123(15): 155106. [74] ZHANG Y Q, DONG H X, MOU N L, et al. Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications[J]. Nanoscale, 2021, 13(16): 7831-7837. [75] LI H Y, YUAN H, COSTA F, et al. Optically transparent water-based wideband switchable radar absorber/reflector with low infrared radiation characteristics[J]. Optics Express, 2021, 29(26): 42863. [76] SHEN Y, ZHANG J Q, SUI S, et al. Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction[J]. Journal of Physics D: Applied Physics, 2018, 51(48): 485301. |
[1] | 宁旭文, 杨浪, 饶峰, 孙传琳, 方屹, 张凯铭. 铁尾矿在电磁吸波建筑材料中的研究进展[J]. 硅酸盐通报, 2023, 42(3): 925-938. |
[2] | 李俐, 于宏林, 徐文喆, 耿欣. 高熵(Zr,Hf,Nb,Ta)C微米长方体的制备、吸波性能和抗氧化性研究[J]. 硅酸盐通报, 2022, 41(12): 4432-4443. |
[3] | 于明飞, 姚伦标, 卿玉长, 全京敏. 含频率选择表面耐高温吸波涂层的高温吸波性能[J]. 硅酸盐通报, 2021, 40(7): 2401-2408. |
[4] | 王坤, 张涛, 王建, 夏龙. 壳核结构SiC/C纤维的制备与吸波性能的研究[J]. 硅酸盐通报, 2021, 40(4): 1378-1387. |
[5] | 杜恒, 张帆, Shen Gang, Qaim Khan, 凡康康, 张碧晗, 李宁, 范冰冰, 张锐. Ti3C2Tx/Ni/TiO2复合粉体的制备及吸波性能研究[J]. 硅酸盐通报, 2021, 40(1): 296-303. |
[6] | 翁兴媛;陈宏伟;马志军;关智浩. 不同稀土Nd3+掺杂含量对锰锌铁氧体吸波性能的影响[J]. 硅酸盐通报, 2019, 38(11): 3392-339. |
[7] | 吕林女;王全超;何永佳;孙珂珂. 纳米Mn-Zn铁氧体电磁吸波水泥基材料的制备与性能[J]. 硅酸盐通报, 2018, 37(3): 767-771. |
[8] | 韩彩霞;沈文婷;甘延玲;崔素萍. 石墨-石膏基吸波复合材料的制备与性能[J]. 硅酸盐通报, 2017, 36(8): 2583-2588. |
[9] | 马志军;王俊策;翁兴媛;张琪;苏文贵. 晶化时间对纳米Ni0.6Zn0.4Fe2O4吸波性能的影响[J]. 硅酸盐通报, 2016, 35(11): 3659-3663. |
[10] | 马志军;王俊成;张威;王俊策;苏文贵. 共沉淀水热法制备锰锌铁氧体纳米晶及其表征[J]. 硅酸盐通报, 2015, 34(5): 1343-1347. |
[11] | 戴银所;王明洋;王源;丁建党;陆春华;许仲梓. 钢纤维复合水泥砂浆的吸波性能研究[J]. 硅酸盐通报, 2015, 34(4): 1026-1030. |
[12] | 李永波;黄成亮;曲发增;李萍;张宝芹;段衍鹏. 碳纤维吸波材料研究现状及展望[J]. 硅酸盐通报, 2015, 34(11): 3228-3231. |
[13] | 张月芳;郝万军;段玉平;刘顺华. 水泥基电磁波吸收材料研究进展[J]. 硅酸盐通报, 2014, 33(11): 2908-2912. |
[14] | 娄鸿飞;王建江;胡文斌;程勇. 空心微珠的制备及其电磁性能的研究进展[J]. 硅酸盐通报, 2010, 29(5): 1103-1108. |
[15] | 王海滨;刘树信;霍冀川;吕淑珍. 无机吸波材料研究进展[J]. 硅酸盐通报, 2008, 27(4): 754-758. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||