[1] RAMANA M V. Technical and social problems of nuclear waste[J]. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7(4): e289. [2] 陈泽坤,张丽艳.高放废液硼硅酸盐玻璃固化体热学性质和化学稳定性的统计结构模拟[J].硅酸盐学报,2022,50(5):1301-1309. CHEN Z K, ZHANG L Y. Statistical structure modeling for thermal properties and chemical stability of borosilicate glass wasteforms with high level radioactive waste[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1301-1309 (in Chinese). [3] WANG X, WU L, LI H D, et al. Preparation and characterization of SO-3 doped Barium borosilicate glass-ceramics containing zirconolite and barite phases[J]. Ceramics International, 2017, 43(1): 534-539. [4] CHOUARD N, CAURANT D, MAJÉRUS O, et al. Effect of MoO3, Nd2O3, and RuO2 on the crystallization of soda-lime aluminoborosilicate glasses[J]. Journal of Materials Science, 2015, 50(1): 219-241. [5] 周俊杰.含Mo和Nd硼硅酸盐玻璃及玻璃陶瓷固化体的研究[D].绵阳:西南科技大学,2021. ZHOU J J. Study on Mo-and Nd-containing borosilicate glasses and glass-ceramics[D]. Mianyang: Southwest University of Science and Technology, 2021 (in Chinese). [6] 王 辅,廖其龙,竹含真,等.高放核废料磷酸盐玻璃陶瓷固化研究进展[J].核化学与放射化学,2021,43(6):441-452. WANG F, LIAO Q L, ZHU H Z, et al. Research progress of immobilization of high-level nuclear waste by using phosphate glass-ceramics[J]. Journal of Nuclear and Radiochemistry, 2021, 43(6): 441-452 (in Chinese). [7] 竹含真.硼硅酸盐玻璃陶瓷固化体结构与化学稳定性的研究[D].绵阳:西南科技大学,2020. ZHU H Z. Study on the structure and chemical durability of borosilicate glass-ceramic waste forms[D]. Mianyang: Southwest University of Science and Technology, 2020 (in Chinese). [8] WANG F, LIAO Q L, DAI Y Y, et al. Properties and vibrational spectra of iron borophosphate glasses/glass-ceramics containing lanthanum[J]. Materials Chemistry and Physics, 2015, 166: 215-222. [9] WU K M, WANG F, LIAO Q L, et al. Synthesis of pyrochlore-borosilicate glass-ceramics for immobilization of high-level nuclear waste[J]. Ceramics International, 2020, 46(5): 6085-6094. [10] 孟 成.乏燃料后处理中放射性核素的陶瓷固化体的结构与化学稳定性研究[D].杭州:浙江大学,2016. MENG C. Structure and chemical durability of ceramic matrix for the immobilization of radionuclides from the spent fuel reprocessing[D]. Hangzhou: Zhejiang University, 2016 (in Chinese). [11] 余宏福,罗 静,李 静,等.氧基磷灰石玻璃陶瓷固化模拟锕系铈/钕的研究[J].西南科技大学学报,2021,36(1):9-15. YU H F, LUO J, LI J, et al. Oxyapatite glass ceramics immobilizing simulated actinides cerium/neodymium[J]. Journal of Southwest University of Science and Technology, 2021, 36(1): 9-15 (in Chinese). [12] ZHU H Z, WANG F, LIAO Q L, et al. Synthesis and characterization of zirconolite-sodium borosilicate glass-ceramics for nuclear waste immobilization[J]. Journal of Nuclear Materials, 2020, 532: 152026. [13] MCCLOY J S, RILEY B J, CRUM J, et al. Crystallization study of rare earth and molybdenum containing nuclear waste glass ceramics[J]. Journal of the American Ceramic Society, 2019, 102(9): 5149-5163. [14] PETERSON J A, CRUM J V, RILEY B J, et al. Synthesis and characterization of oxyapatite[Ca2Nd8(SiO4)6O2]and mixed-alkaline-earth powellite [(Ca,Sr,Ba)MoO4] for a glass-ceramic waste form[J]. Journal of Nuclear Materials, 2018, 510: 623-634. [15] MATTHEW ASMUSSEN R, NEEWAY J J, KASPAR T C, et al. Corrosion behavior and microstructure influence of glass-ceramic nuclear waste forms[J]. CORROSION, 2017, 73(11): 1306-1319. [16] RAVIKUMAR R, GOPAL B, JENA H. Crystal chemical substitution at Ca and La sites in CaLa4(SiO4)3O to design the composition Ca1-xMxLa4-xREx(SiO4)3O for nuclear waste immobilization and its influence on the thermal expansion behavior[J]. Inorganic Chemistry, 2018, 57(11): 6511-6520. [17] KIM M, HEO J. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing[J]. Journal of Nuclear Materials, 2015, 467: 224-228. [18] 连启会.含钼硼硅盐玻璃陶瓷固化体成分、结构及化学稳定性研究[D].绵阳:西南科技大学,2020. LIAN Q H. Study on the composition, structure and chemical stability of Mo-containing glass-ceramics[D]. Mianyang: Southwest University of Science and Technology, 2020 (in Chinese). [19] TONG Q, HUO J C, ZHANG X Q, et al. Study on structure and properties of La2O3-doped basaltic glasses for immobilizing simulated lanthanides[J]. Materials (Basel, Switzerland), 2021, 14(16): 4709. [20] QUINTAS A, MAJÉRUS O, CAURANT D, et al. Crystallization of a rare earth-rich aluminoborosilicate glass with varying CaO/Na2O ratio[J]. Journal of the American Ceramic Society, 2007, 90(3): 712-719. [21] 陈 华,李保卫,赵 鸣,等.La3+存在形式对白云鄂博稀选尾矿微晶玻璃性能的影响[J].物理学报,2015,64(19):247-254. CHEN H, LI B W, ZHAO M, et al. Effect of existence form of La3+ on the properties of the Bayan Obo Mine tailing glass ceramics[J]. Acta Physica Sinica, 2015, 64(19): 247-254 (in Chinese). [22] 程金树,康俊峰,楼贤春,等.核化温度对微晶玻璃析晶性能的影响[J].武汉理工大学学报,2014,36(3):1-5. CHENG J S, KANG J F, LOU X C, et al. Effect of nucleation temperature on the crystallization behavior of glass-ceramics[J]. Journal of Wuhan University of Technology, 2014, 36(3): 1-5 (in Chinese). [23] 龚 伟,钟 良,刘传慧,等.热处理制度对LZAS系微晶玻璃析晶行为的影响[J].人工晶体学报,2015,44(11):3140-3146. GONG W, ZHONG L, LIU C H, et al. Effects of heat treatment schedule on crystallization behaviors of LZAS system glass-ceramics[J]. Journal of Synthetic Crystals, 2015, 44(11): 3140-3146 (in Chinese). [24] YU M, LIN J, ZHOU S B, et al. Sol-gel deposition and luminescent properties of oxyapatite Ca2(Y,Gd)8(SiO4)6O2 phosphor films doped with rare earth and lead ions[J]. Journal of Materials Chemistry, 2002, 12(1): 86-91. [25] LI Q X, LI Z, HE C, et al. Understanding the solubility and crystallization of molybdenum in high-sodium borosilicate glasses: effect of lanthanum oxide[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(5): 2105-2115. [26] WIERZBICKA-WIECZOREK M, GÖCKERITZ M, KOLITSCH U, et al. Crystallographic and spectroscopic investigations on nine metal-rare-earth silicates with the apatite structure type[J]. European Journal of Inorganic Chemistry, 2015, 2015(6): 948-963. [27] 提学超,罗 意,宋功保,等.Ce4+掺杂钙钛锆石(CaZr1-xCexTi2O7)相变行为的研究[J].中国稀土学报,2021,39(2):287-293. TI X C, LUO Y, SONG G B, et al. Phase evolution of Ce4+-doped zirconolite CaZr1-xCexTi2O7 ceramics[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(2): 287-293 (in Chinese). [28] ZHONG J S, CHEN D Q, XU H X, et al. Red-emitting CaLa4(SiO4)3O: eu3+ phosphor with superior thermal stability and high quantum efficiency for warm w-LEDs[J]. Journal of Alloys and Compounds, 2017, 695: 311-318. [29] 郭晋芝,万 放,吴兴隆,等.钠离子电池工作原理及关键电极材料研究进展[J].分子科学学报,2016,32(4):265-279. GUO J Z, WAN F, WU X L, et al. Sodium-ion batteries: work mechanism and the research progress of key electrode materials[J]. Journal of Molecular Science, 2016, 32(4): 265-279 (in Chinese). [30] ZHENG B B, LUO Y F, LIAO H L, et al. Investigation of the crystallinity of suspension plasma sprayed hydroxyapatite coatings[J]. Journal of the European Ceramic Society, 2017, 37(15): 5017-5021. [31] LUO Z W, LEI W C, LIANG H Z, et al. Improving sealing properties of CaO-SrO-Al2O3-SiO2 glass and glass-ceramics for solid oxide fuel cells: effect of La2O3 addition[J]. Ceramics International, 2020, 46(11): 17698-17706. [32] ZHOU J J, LIAO Q L, WANG F, et al. Effect of Na2O and CaO on the solubility and crystallization of Mo in borosilicate glasses[J]. Journal of Non-Crystalline Solids, 2021, 557: 120623. [33] CRUM J V, TURO L, RILEY B, et al. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals[J]. Journal of the American Ceramic Society, 2012, 95(4): 1297-1303. [34] PATIL D S,ŠKONALE M, GABEL M, et al. Impact of rare earth ion size on the phase evolution of MoO3-containing aluminoborosilicate glass-ceramics[J]. Journal of Nuclear Materials, 2018, 510: 539-550. [35] CHEN H, MARCIAL J, AHMADZADEH M, et al. Partitioning of rare earths in multiphase nuclear waste glass-ceramics[J]. International Journal of Applied Glass Science, 2020, 11(4): 660-675. [36] KISSINGER R M, CRUM J V, RILEY B J. Single-component-at-a-time variation study for glass-ceramic waste forms[J]. Journal of the American Ceramic Society, 2021, 104(7): 3738-3749. [37] NEEWAY J J, ASMUSSEN R M, MCELROY E M, et al. Kinetics of oxyapatite [Ca2Nd8(SiO4)6O2] and powellite [(Ca,Sr,Ba)MoO4] dissolution in glass-ceramic nuclear waste forms in acidic, neutral, and alkaline conditions[J]. Journal of Nuclear Materials, 2019, 515: 227-237. [38] 核工业标准化研究所.放射性废物体和废物包的特性鉴定:EJ 1186—2005[S].北京:核工业行业标准,2005. Nuclear Industry Standardization Institute. Characterization of radioactive waste forms and packages: EJ 1186—2005[S]. Beijing: Nuclear Industry Industry Standards, 2005 (in Chinese). |