[1] 庞 薇,付秀华,邢 政,等.硫化锌基底8~12 μm红外增透膜的研究[J].长春理工大学学报(自然科学版),2008,31(2):46-47+39. PANG W, FU X H, XING Z, et al. High performance infrared antireflection filmson ZnS substrate for 8~12μm[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2008, 31(2): 46-47+39 (in Chinese). [2] 杨培志,刘黎明,张小文,等.长波红外光学材料的研究进展[J].无机材料学报,2008,23(4):641-646. YANG P Z, LIU L M, ZHANG X W, et al. Research progress of long-wavelength infrared optical materials[J]. Journal of Inorganic Materials, 2008, 23(4): 641-646 (in Chinese). [3] 戴世勋,林常规,沈 祥,等.红外硫系玻璃及其光子器件[M].北京:科学出版社,2017:130-201. DAI S X,LIN C G,SHEN X,et al.Infrared chalcogenide glass and photonic devices[M].Beijing: Science Press, 2017: 130-201 (in Chinese). [4] 陈国荣,章向华.红外夜视仪用精密模压硫系玻璃研究进展[J].硅酸盐通报,2004,23(1):3-7. CHEN G R, ZHANG X H. Development of fine molded chalcogenide glasses for IR night vision[J]. Bulletin of the Chinese Ceramic Society, 2004, 23(1): 3-7 (in Chinese). [5] CHEN G R, CHENG J J. Relationship between the average coordination number and properties of chalconitride glasses[J]. Journal of the American Ceramic Society, 2005, 81(6): 1695-1697. [6] 骆守俊,黄富元,詹道教,等.硫系玻璃在红外成像系统应用进展[J].激光与红外,2010,40(1):9-13. LUO S J, HUANG F Y, ZHAN D J, et al. Development of chalcogenide glasses for infrared thermal imaging system[J]. Laser & Infrared, 2010, 40(1): 9-13 (in Chinese). [7] 菅佳玲,叶羽婷,李钧颖,等.基于硫系玻璃的微纳光子器件研究进展[J].硅酸盐学报,2021,49(12):2676-2690. JIAN J L, YE Y T, LI J Y, et al. Recent progress of micro/nano photonic devices based on chalcogenide glasses[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2676-2690 (in Chinese). [8] SANGHERA J S, AGGARWAL I D. Active and passive chalcogenide glass optical fibers for IR applications: a review[J]. Journal of Non-Crystalline Solids, 1999, 256/257: 6-16. [9] Development and infrared applications of chalcogenide glass optical fibers[J]. Fiber and Integrated Optics, 2000, 19(3): 251-274. [10] ZHANG X H, MA H, LUCAS J. Application of chalcogenide glass bulks and fibers[J]. Journal of Optoelectronics and Advanced Materials, 2003, 5(5): 1327-1333. [11] HILTON A R. Chalcogenide glasses for infrared optics[M]. New York: McGraw-Hill Companies, 2010: 71-89. [12] LUCAS J, TROLES J, ZHANG X H, et al. Glasses to see beyond visible[J]. Comptes Rendus Chimie, 2018, 21(10): 916-922. [13] BAYYA S S, GIBSON D J, NGUYEN V Q, et al. Multispectral imaging system comprising new multispectral optics: US9658105[P]. 2017-05-23. [14] SAVAGE J A, LEWIS K L, WHITEHOUSE R H L. Recent progress in the synthesis of calcium lanthanum sulphide optical ceramic[C]//Proc SPIE 0588, Recent Developments in Materials & Detectors for the Infrared, 1986, 0588: 127-132. [15] SAVAGE J A, LEWIS K L, KINSMAN B E, et al. Fabrication of infrared optical ceramics in the CaLa2S4-La2S3 solid solution system[C]//SPIE Proceedings, Infrared and Optical Transmitting Materials. San Diego: SPIE, 1986, 683: 79-84. [16] 王亚玲,常芳娥,许军锋,等.大尺寸Ge23Se67Sb10硫系玻璃的光学均匀性及影响因素分析[J].西安工业大学学报,2017,37(12):906-910. WANG Y L, CHANG F G, XU J F, et al. Optical uniformity of Ge23Se67Sb10 chalcogenide glass with large size and influencing factor analysis[J]. Journal of Xi'an Technological University, 2017, 37(12): 906-910 (in Chinese). [17] 王衍行,祖成奎,赵 华,等.长波红外玻璃的研究[J].功能材料,2010,41(s2):196-200. WANG Y H, ZU C K, ZHAO H, et al. Study on long-wavelength infrared glasses[J]. Journal of Functional Materials, 2010, 41(s2): 196-200 (in Chinese). [18] 陈国荣,程继健.高纯透红外硫系玻璃材料的制备[J].硅酸盐通报,1997,16(4):63-69. CHEN G R, CHENG J J. Preparation of high purity chalcogenide glasses as an IR transmitting material[J]. Bulletin of The Chinese Ceramic Society, 1997, 16(4): 63-69 (in Chinese). [19] 戴世勋,彭 波,沈 祥,等.Ge-Se-Sb硫系玻璃中杂质消除研究[J].光子学报,2008,37(1):1-4. DAI S X, PENG B, SHEN X, et al. Elimination of impurities in Ge-Se-Sb glasses[J]. Acta Photonica Sinica, 2008, 37(1): 1-4 (in Chinese). [20] 余尧楚,杨佩红.硫系玻璃中微量杂质对光性影响的消除和测定[J].玻璃与搪瓷,1988,16(4):14-17. YU Y C, YANG P H. Determination and elimination of harmful effects of trace amount impurities in chalcogenide glasses on their optical properties[J]. Glass & Enamel, 1988, 16(4): 14-17 (in Chinese). [21] 杨 海,褚乃林,韩兆忠,等.含锗硫系玻璃中氧吸收的消除[J].稀有金属,1998(2):146-148. YANG H, CHU N L, HAN Z Z, et al. Elimination of oxygen absorption in chalcogenide glasses[J]. Chinese Journal of Rare Metals, 1998(2): 146-148 (in Chinese). [22] 常芳娥,朱仲飞,许军锋,等.冷却方式对硫系玻璃性能的影响[J].功能材料,2015,46(17):17092-17096. CHANG F G, ZHU Z F, XU J F, et al. Influence of cooling methods on the properties of chalcogenide glass[J]. Journal of Functional Materials, 2015, 46(17): 17092-17096 (in Chinese). [23] LEZAL D. Chalcogenide glasses-survey and progress[J]. Journal of Optoelectronics and Advanced Materials, 2003, 5(1): 23-34. [24] WEI W H, FANG L, SHEN X, et al. Transition threshold in GexSb10Se90-x glasses[J]. Journal of Applied Physics, 2014, 115(11): 113510. [25] WEI W H, SHEN X, XU S W, et al. Structural investigations of GexSb10Se90-x glasses using X-ray photoelectron spectroscopy[J]. Journal of Applied Physics, 2014, 115(18): 183506. [26] CHOI J, CHA D, KIM J H, et al. Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses[J]. Journal of Materials Research, 2016, 31: 1674-1680. [27] 坚增运,曾 召,董广志,等.硫系红外玻璃的研究进展[J].西安工业大学学报,2011,31(1):1-8. JIAN Z Y, ZENG Z, DONG G Z, et al. Progress in the research of chalcogenide glasses for infrared transmission[J]. Journal of Xi'an Technological University, 2011, 31(1): 1-8 (in Chinese). [28] 王小虎,薛建强,陶海征,等.硫系玻璃材料的研究进展[J].建材发展导向,2003,1(2):28-31. WANG X H, XUE J Q, TAO H Z, et al. Research progress of chalcogenide glass materials [J]. Development Guide to Building Materials, 2003, 1(2): 28-31 (in Chinese). [29] HILTON A R, HAYES D J, RECHTIN M D. Infrared absorption of some high-purity chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 1975, 17(3): 319-338. [30] REITTER A M, SREERAM A N, VARSHNEYA A K, et al. Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 1992, 139: 121-128. [31] 王 琪,赵慧峰,祖成奎,等.硫系玻璃及其制备方法及装置:ZL201710375991.5[P].2017-08-18. WANG Q, ZHAO H F, ZU C K, et al. Chalcogenide glass and preparation method and device: ZL201710375991.5[P]. 2017-08-18 (in Chinese). [32] 戴世勋,陈惠广,李茂忠,等.硫系玻璃及其在红外光学系统中的应用[J].红外与激光工程,2012,41(4):847-852. DAI S X, CHEN H G, LI M Z, et al. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 2012, 41(4): 847-852 (in Chinese). [33] SYLLAIOS A J, AUTERY W D, TYBER G S, et al. System and method for vapor pressure controlled growth of infrared chalcogenide glasses: US7159419[P]. 2007-01-09. [34] 胡向平,唐雪琼,梁立新,等.一种非氧化物硫系玻璃漏注生产装置及其生产方法:201310277768.9[P].2013-10-23. HU X P, TANG X Q, LIANG L X, et al. Leakage-injection production device for non-oxide chalcogenide glass and production method: 201310277768.9[P]. 2013-10-23 (in Chinese). [35] 赵慧峰,祖成奎,刘永华,等.一种硫系红外玻璃的连续熔制设备: 201610756079.X[P].2016-08-29 ZHAO H F, ZU C K, LIU Y H, et al. Continuous melting equipment for sulfur infrared glass: 201610756079.X[P]. 2016-08-29 (in Chinese). [36] LIN C G, RÜSSEL C, DAI S X. Chalcogenide glass-ceramics: functional design and crystallization mechanism[J]. Progress in Materials Science, 2018, 93: 1-44. [37] BENJAMIN J S. Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical Transactions, 1970, 1(10): 2943-2951. [38] KOCH C C. Materials synthesis by mechanical alloying[J]. Annual Review of Materials Science, 1989, 19(1): 2943- 2951. [39] 袁子洲,王冰霞,梁卫东,等.高能球磨制备非晶粉末的形成机理及形成能力的研究综述[J].粉末冶金工业,2006,16(1):30-34. YUAN Z Z, WANG B X, LIANG W D, et al. Review of mechanisms and glass-forming ability of amorphous powder synthesized by high energy ball milling[J]. Powder Metallurgy Industry, 2006, 16(1): 30-34 (in Chinese). [40] MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from LiS-P2S glasses[J]. Advanced Materials, 2005, 17(7): 918-921. [41] HAYASHI A, MINAMI K, UJIIE S, et al. Preparation and ionic conductivity of Li7P3S11 -z glass-ceramic electrolytes[J]. Journal of Non-Crystalline Solids, 2010, 356(44/45/46/47/48/49): 2670-2673. [42] TATSUMISAGO M, HAYASHI A. Superionic glasses and glass-ceramics in the Li2S-P2S5 system for all-solid-state lithium secondary batteries[J]. Solid State Ionics, 2012, 225: 342-345. [43] TREVEY J, JANG J S, JUNG Y S, et al. Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(9): 1830-1833. [44] HUBERT M, DELAIZIR G, MONNIER J, et al. An innovative approach to develop highly performant chalcogenide glasses and glass-ceramics transparent in the infrared range[J]. Optics Express, 2011, 19(23): 23513-23522. [45] 罗传军,张宁博,张齐齐,等.Li3PS4硫化物固态电解质制备及其电化学性能研究[J].河南化工,2021,38(8):15-17. LUO C J, ZHANG N B, ZHANG Q Q, et al. Study on preparation and electrochemical performance of Li3PS4 sulfide solid electrolyte[J]. Henan Chemical Industry, 2021, 38(8): 15-17 (in Chinese). [46] 崔广军,韩 喻,许 静.Li2S-P2S5玻璃陶瓷固体电解质的制备研究[J].广州化工,2014,42(17):71-73. CUI G J, HAN Y, XU J. Preparation and study of Li2S-P2S5 glass-ceramic solid electrolytes[J]. Guangzhou Chemical Industry, 2014, 42(17): 71-73 (in Chinese). [47] 李 杨,韩奇高,徐志彬,等.Li3PS4玻璃陶瓷电解质的制备及其电化学性能[J].电源技术,2019,43(6):937-938+967. LI Y, HAN Q G, XU Z B, et al. Synthesis and electrochemical performances of Li3PS4 glass-ceramic electrolyte[J]. Chinese Journal of Power Sources, 2019, 43(6): 937-938+967 (in Chinese). [48] GAFFET E, HARMELIN M. Crystal-amorphous phase transition induced by ball-milling in silicon[J]. Journal of the Less Common Metals, 1990, 157(2): 201-222. [49] WHITE W B, CHESS D, CHESS C A, et al. CaLa2S4: ceramic window material for the 8 to 14 pm region[C]//25th Annual Technical Symposium. Proc SPIE 0297, Emerging Optical Materials. San Diego: SPIE, 1982, 0297: 38-43. [50] SAUNDERS K J, WONG T Y, HARTNETT T M, et al. Current and future development of calcium lanthanum sulfide[C]//30th Annual Technical Symposium. Proc SPIE 0683, Infrared and Optical Transmitting Materials. San Diego: 1986, 0683: 72-78. [51] LI HSING W, MING SHYNG T, MIN HSIUNG H. Dispersion of precursors for improving the homogeneity and sinterability of CaLa2S4 powders[J]. Materials Chemistry and Physics, 1993, 35(1): 64-70. [52] WANG L H, HON M. Effects of sulfidization and sintering temperatures of CaLa2S4 powder on its optical property[J]. Japanese Journal of Applied Physics, 1992, 31: 2177-2180. [53] TSAY B J, HSING WANG L, HSIUNG HON M. Formation and densification of CaLa2S4 powders by sulfidization of modified metal alkoxides in different atmospheres[J]. Materials Science and Engineering: B, 2000, 72(1): 31-35. [54] LI P S, JIE W Q, LI H Y. Influences of hot-pressing conditions on the optical properties of lanthanum sulfide ceramics[J]. Journal of the American Ceramic Society, 2011, 94(4): 1162-1166. [55] DURAND G R, BIZOT Q, HERBERT N, et al. Processing of CaLa2S4 infrared transparent ceramics: a comparative study of HP and FAST/SPS techniques[J]. Journal of the American Ceramic Society, 2020, 103(4): 2328-2339. [56] 刘自军,桂一鸣,张徐生,等.一种硫系玻璃红外梯度折射率光学镜片的制备方法:202111520507.6[P].2022-04-22. LIU Z J, GUI Y M, ZHANG X S, et al. The invention relates to a preparation method of a chalcogenide glass infrared gradient refractive index optical lens: 202111520507.6[P]. 2022-04-22 (in Chinese). [57] LI C K, LIU H J, ZHOU G J, et al. Infrared GRIN GeS2-Sb2S3-CsCl chalcogenide glass-ceramics[J]. Journal of the American Ceramic Society, 2022, 105(10): 6007-6012. [58] SISKEN L, KANG M, VERAS J M, et al. Infrared glass-ceramics with multidispersion and gradient refractive index attributes[J]. Advanced Functional Materials, 2019, 29(35): 1902217. |