[1] 覃丽芳.碱激发胶凝材料产物结构特性研究[D].长沙:湖南大学,2019:6-7. QIN L F. Study on the structural characteristics of gel products of alkali-activated binders[D]. Changsha: Hunan University, 2019: 6-7 (in Chinese). [2] 朱效宏,李 青,康晓娟,等.干湿循环硫酸盐环境下碱矿渣水泥C(N)-A-S-H凝胶结构演化规律[J].硅酸盐学报,2021,49(11):2529-2537. ZHU X H, LI Q, KANG X J, et al. Nano-structural change of C(N)-A-S-H gel in alkali-activated slag pastes subjected to wetting-drying cyclic sulphate attack[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2529-2537 (in Chinese). [3] RAVIKUMAR D, NEITHALATH N. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH[J]. Cement and Concrete Composites, 2012, 34(7): 809-818. [4] VIKAS G, RAO T D G. Setting time, workability and strength properties of alkali activated fly ash and slag based geopolymer concrete activated with high silica modulus water glass[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2021, 45(3): 1483-1492. [5] BALLEKERE KUMARAPPA D, PEETHAMPARAN S, NGAMI M. Autogenous shrinkage of alkali activated slag mortars: basic mechanisms and mitigation methods[J]. Cement and Concrete Research, 2018, 109: 1-9. [6] YUAN X H, CHEN W, LU Z A, et al. Shrinkage compensation of alkali-activated slag concrete and microstructural analysis[J]. Construction and Building Materials, 2014, 66: 422-428. [7] BERNAL S A, PROVIS J L, MYERS R J, et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders[J]. Materials and Structures, 2015, 48(3): 517-529. [8] MOSESON A J, MOSESON D E, BARSOUM M W. High volume limestone alkali-activated cement developed by design of experiment[J]. Cement and Concrete Composites, 2012, 34(3): 328-336. [9] XU H, PROVIS J L, DEVENTER J, et al. Characterization of aged slag concretes[J]. ACI Materials Journal, 2008, 105(2): 131-139. [10] 辛东升.单组分生/熟石灰与碳酸钠激发矿渣胶凝材料的制备与机理研究[D].福州:福州大学,2018:52-54. XIN D S. Study on preparation and mechanism of one-part alkali-activated slag cementitious material with quicklime, slaked lime and sodium carbonate[D]. Fuzhou: Fuzhou University, 2018: 52-54 (in Chinese). [11] RODRIGUEZ E, BERNAL S, GUTIERREZ R M D, et al. Alternative concrete based on alkali-activated slag[J]. Materiales De Construccion, 2008, 58(291): 53-67. [12] KOMLJENOVIĆ M, BAŠČAREVIĆ Z, MARJANOVIĆ N, et al. External sulfate attack on alkali-activated slag[J]. Construction and Building Materials, 2013, 49: 31-39. [13] 张 健.碱矿渣/粉煤灰水泥碳化、氯离子结合与抗硫酸盐侵蚀性能[D].长沙:湖南大学,2019:98-99. ZHANG J. Carbonation, chloride binding and sulfate resistance of alkali-activated slag/fly ash cements[D]. Changsha: Hunan University, 2019: 98-99 (in Chinese). [14] MITHUN B M, NARASIMHAN M C. Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate[J]. Journal of Cleaner Production, 2016, 112: 837-844. [15] BAKHAREV T, SANJAYAN J G, CHENG Y B. Sulfate attack on alkali-activated slag concrete[J]. Cement and Concrete Research, 2002, 32(2): 211-216. [16] YE H L, CHEN Z J, HUANG L. Mechanism of sulfate attack on alkali-activated slag: the role of activator composition[J]. Cement and Concrete Research, 2019, 125: 105868. [17] 国家市场监督管理总局,国家标准化管理委员会.水泥胶砂强度检验方法(ISO法):GB/T 17671—2021[S].北京:中国标准出版社,2021. State Administration for Market Regulation, Standardization Administration. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021 (in Chinese). [18] 艾新玉.硫酸根和硝酸根等无机阴离子的紫外吸收光谱性质研究[D].哈尔滨:哈尔滨工业大学,2019:9-16. AI X Y. Ultraviolet absorption spectroscopy properties of inorganic anions such as sulphate and nitrate[D]. Harbin: Harbin Institute of Technology, 2019: 9-16 (in Chinese). [19] RASHAD A M, BAI Y, BASHEER P A M, et al. Hydration and properties of sodium sulfate activated slag[J]. Cement and Concrete Composites, 2013, 37: 20-29. [20] MOBASHER N, BERNAL S A, PROVIS J L. Structural evolution of an alkali sulfate activated slag cement[J]. Journal of Nuclear Materials, 2016, 468: 97-104. [21] JIN L, HUANG Q J, ZENG H Y, et al. Hydrotalcite-gated hollow mesoporous silica delivery system for controlled drug release[J]. Microporous and Mesoporous Materials, 2019, 274: 304-312. [22] 黄振育,于小华.碱矿渣混凝土与水泥混凝土的抗硫酸盐侵蚀性能研究[J].混凝土与水泥制品,2021(9):21-24. HUANG Z Y, YU X H. Study on sulfate resistance of alkali-activated slag concrete and Portland cement concrete[J]. China Concrete and Cement Products, 2021(9): 21-24 (in Chinese). [23] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999:24. WU Z W, LIAN H Z. High performance concrete[M]. Beijing: China Railway Publishing House, 1999: 24 (in Chinese). [24] 张 璇.硫酸盐侵蚀环境下混凝土断裂性能试验研究[D].大连:大连理工大学,2019:4-6. ZHANG X. Experiment study on fracture behaviors of concrete exposed to different sulfate environments[D]. Dalian: Dalian University of Technology, 2019: 4-6 (in Chinese). [25] 姜 磊.硫酸盐侵蚀环境下混凝土劣化规律研究[D].西安:西安建筑科技大学,2014:6-7. JIANG L. Study on deterioration of concrete under sulfate attack[D]. Xi'an: Xi'an University of Architecture and Technology, 2014: 6-7 (in Chinese). [26] 肖忠明,郭俊萍.快硬硫铝酸盐水泥抗折强度倒缩机理的探讨[J].水泥,2016(12):3-5. XIAO Z M, GUO J P. Discussion on reduction mechanism of flexural strength of quick hardening sulpho-aluminate cement[J]. Cement, 2016(12): 3-5 (in Chinese). [27] GONG K, WHITE C E. Nanoscale chemical degradation mechanisms of sulfate attack in alkali-activated slag[J]. The Journal of Physical Chemistry C, 2018, 122(11): 5992-6004. |