[1] PODE R. Potential applications of rice husk ash waste from rice husk biomass power plant[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1468-1485. [2] 汪知文,李碧雄.稻壳灰应用于水泥混凝土的研究进展[J].材料导报,2020,34(9):9003-9011. WANG Z W, LI B X. Research progress on application of rice husk ash in cement and concrete[J]. Materials Reports, 2020, 34(9): 9003-9011 (in Chinese). [3] 孙 朋,郭占成.钢渣的胶凝活性及其激发的研究进展[J].硅酸盐通报,2014,33(9):2230-2235. SUN P, GUO Z C. Research progress on cementitious activity and its activation of steel slag[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(9): 2230-2235 (in Chinese). [4] 陈 巍.脱硫灰改善污泥脱水性能的机理及用于水泥掺料的研究[D].北京:北京科技大学,2017. CHEN W. Research on the mechanism of improving sewage sludge dewaterability with desulfurization ash and its application as cement admixture[D]. Beijing: University of Science and Technology Beijing, 2017 (in Chinese). [5] ZHANG N, DUAN H B, SUN P W, et al. Characterizing the generation and environmental impacts of subway-related excavated soil and rock in China[J]. Journal of Cleaner Production, 2020, 248: 119242. [6] 周永祥,王继忠.预拌固化土的原理及工程应用前景[J].新型建筑材料,2019,46(10):117-120. ZHOU Y X, WANG J Z. Principle of ready-mixed solidified soil and its prospects for engineering application[J]. New Building Materials, 2019, 46(10): 117-120 (in Chinese). [7] 木幡行宏.流动力学理土力学特质课题[J].土木学会论文集F,2006,62(4):618-627. YUKIHIRO K. Mechanical properties of fluidized soil and future challenges[J]. Journal of the Japan Society of Civil Engineers F, 2006, 62(4): 618-627. [8] 顾欢达,陈 甦.河道淤泥的流动化处理及其工程性质的试验研究[J].岩土工程学报,2002,24(1):108-111. GU H D, CHEN S. Experimental study on flow treatment and engineering properties of river silt[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 108-111 (in Chinese). [9] 李建望.河道淤泥流动化处理及其稳定性研究[D].苏州:苏州科技学院,2009. LI J W. The liquefied stabilization method and stability research for river sludge[D]. Suzhou: Suzhou Institute of Science and Technology, 2009 (in Chinese). [10] 范 猛.非压实回填土基本性能及应用研究[D].北京:北京工业大学,2009. FAN M. Research on properties and applications of self-compacting backfill[D]. Beijing: Beijing University of Technology, 2009 (in Chinese). [11] 邹培林.流动化处治土的强度特性试验研究[D].西安:长安大学,2016. ZOU P L. Research on strength properties of flowable treated soil[D]. Xi'an: Chang'an University, 2016 (in Chinese). [12] KALIYAVARADHAN S K, LING T C, GUO M Z, et al. Waste resources recycling in controlled low-strength material (CLSM): a critical review on plastic properties[J]. Journal of Environmental Management, 2019, 241: 383-396. [13] American Concrete Institute. Cement and concrete terminology[R]. ACI 116, 2000. [14] 彭春元,许日昌,殷素红,等.水泥产业低碳技术路线图的研究方法探讨[J].材料导报,2012,26(19):106-111. PENG C Y, XU R C, YIN S H, et al. Study on method of low carbon technique roadmap in cement industry[J]. Materials Review, 2012, 26(19): 106-111 (in Chinese). [15] ZHANG C Y, HAN R, YU B Y, et al. Accounting process-related CO2 emissions from global cement production under shared socioeconomic pathways[J]. Journal of Cleaner Production, 2018, 184: 451-465. [16] 张登良.加固土原理[M].北京:人民交通出版社,1990. ZHANG D L. Principle of soil reinforcement[M]. Beijing: People's Transportation Press, 1990 (in Chinese). [17] 吴中伟.混凝土科学技术近期发展方向的探讨[J].硅酸盐学报,1979,7(3):262-270. WU Z W. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, 7(3): 262-270 (in Chinese). [18] 张 涛,刘松玉,蔡国军.固化粉土小应变剪切模量与强度增长相关性研究[J].岩土工程学报,2015,37(11):1955-1964. ZHANG T, LIU S Y, CAI G J. Relationship between small-strain shear modulus and growth of strength for stabilized silt[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1955-1964 (in Chinese). [19] NGUYEN Q D, AFROZ S, ZHANG Y D, et al. Autogenous and total shrinkage of limestone calcined clay cement (LC3) concretes[J]. Construction and Building Materials, 2022, 314: 125720. [20] LI J Y, YAO Y. A study on creep and drying shrinkage of high performance concrete[J]. Cement and Concrete Research, 2001, 31(8): 1203-1206. |