硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (9): 2831-2855.
• 特邀综述 • 下一篇
刘云鹏, 申培亮, 何永佳, 王发洲
收稿日期:
2021-07-14
修回日期:
2021-08-08
出版日期:
2021-09-15
发布日期:
2021-10-08
通讯作者:
王发洲,博士,教授。E-mail:fzhwang@whut.edu.cn
作者简介:
刘云鹏(1986—),男,博士,副研究员。主要从事高性能混凝土的研究。E-mail:liuyunpeng@whut.edu.cn基金资助:
LIU Yunpeng, SHEN Peiliang, HE Yongjia, WANG Fazhou
Received:
2021-07-14
Revised:
2021-08-08
Online:
2021-09-15
Published:
2021-10-08
摘要: 骨料是水泥混凝土的主要组成,随着水泥混凝土技术的发展与应用场景的拓展,某些基本性能、表面状态与天然砂石骨料有较大差异的特种骨料逐渐引起人们的重视。例如通过使用轻质/重骨料是满足高层与大跨结构、桥梁悬臂施工、建筑地基抗浮等重大工程对混凝土特殊密度需求的主要手段。同时,利用再生骨料替代天然骨料制备再生骨料混凝土,可有效解决天然砂石资源匮乏与废弃物混凝土资源化利用的问题。这些特种骨料在应用过程中存在着某些共性的科学与技术问题,所配制混凝土的性能、界面过渡区结构、施工特性等与普通水泥混凝土有着显著的区别。本文综述了轻骨料混凝土、重混凝土以及再生骨料混凝土三类特种骨料混凝土的研究进展与发展趋势,重点介绍了特种骨料的性质、混凝土界面过渡区结构与混凝土施工性能等方面的技术现状,最后对上述特种骨料混凝土的未来发展方向提出一定的建议。
中图分类号:
刘云鹏, 申培亮, 何永佳, 王发洲. 特种骨料混凝土的研究进展[J]. 硅酸盐通报, 2021, 40(9): 2831-2855.
LIU Yunpeng, SHEN Peiliang, HE Yongjia, WANG Fazhou. Research Progress of Special Aggregate Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2831-2855.
[1] 中华人民共和国住房和城乡建设部.轻骨料混凝土应用技术标准:JGJ/T 12—2019[S].北京:中国建筑工业出版社,2019. Ministry of Housing and Urban-Rural Development, PRC. Application technical standard of lightweight aggregate concrete: JGJ/T 12—2019[S]. Beijing: China Architecture and Building Press, 2019 (in Chinese). [2] AKERS D J, GRUBER R D, RAMME B W, et al. Guide for structural lightweight-aggregate concrete[S]. ACI COMMITTEE 213, 2014. [3] MENA J, GONZÁLEZ M, REMESAR J C, et al. Developing a very high-strength low-CO2 cementitious matrix based on a multi-binder approach for structural lightweight aggregate concrete[J]. Construction and Building Materials, 2020, 234: 117830. [4] 张礼华.基于界面优化的铬铁冶金渣轻集料制备及混凝土性能研究[D].南京:东南大学,2018. ZHANG L H. Preparation of lightweight aggregate use by ferrochrone slag based on the interfacial zone optimization and the performance of concrete[D]. Nanjing: Southeast University, 2018 (in Chinese). [5] 刘 喜,史尚冕,赵天俊,等.轻骨料混凝土弹性模量计算模型分析[J].硅酸盐通报,2017,36(7):2192-2196+2202. LIU X, SHI S M, ZHAO T J, et al. Calculation model for elastic modulus of lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(7): 2192-2196+2202 (in Chinese). [6] 丁发兴,应小勇,余志武.轻骨料混凝土单轴力学性能统一计算方法[J].中南大学学报(自然科学版),2010,41(5):1973-1979. DING F X, YING X Y, YU Z W. Unified calculation method of uniaxial mechanical properties of lightweight aggregate concrete[J]. Journal of Central South University (Science and Technology), 2010, 41(5): 1973-1979 (in Chinese). [7] ZHANG M H, GJVORV O E. Mechanical properties of high-strength lightweight concrete[J]. ACI Materials Journal, 1991, 88(3): 240-247. [8] 扈士凯,李应权,韩 磊,等.2020年我国轻骨料行业发展报告[J].建材世界,2020,41(6):1-4. HU S K, LI Y Q, HAN L, et al. Report on the development of China's lightweight aggregate industry in 2020[J]. The World of Building Materials, 2020, 41(6): 1-4 (in Chinese). [9] REN P F, LING T C, MO K H. Recent advances in artificial aggregate production[J]. Journal of Cleaner Production, 2021, 291: 125215. [10] 李寿德.人造轻骨料行业发展与典型工程应用(一)[J].砖瓦,2019(11):15-18. LI S D. Development of artificial lightweight aggregate industry and typical engineering applications (Ⅰ)[J]. Brick-Tile, 2019(11): 15-18 (in Chinese). [11] 马明亮,孙晓南,权宗刚,等.我国工业固废制备陶粒资源化利用的研究进展[J].硅酸盐通报,2020,39(8):2492-2500. MA M L, SUN X N, QUAN Z G, et al. Research progress on resource utilization of ceramsite prepared from industrial solid waste in China[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2492-2500 (in Chinese). [12] 汪学彬,杨重卿,张祥伟,等.工业固体废弃物制备陶粒及其应用研究进展[J].中国粉体技术,2021,27(2):1-8. WANG X B, YANG C Q, ZHANG X W, et al. Preparation and application of ceramsite prepared from industrial solid waste: a review[J]. China Powder Science and Technology, 2021, 27(2): 1-8 (in Chinese). [13] NADESAN M S, DINAKAR P. Structural concrete using sintered flyash lightweight aggregate: a review[J]. Construction and Building Materials, 2017, 154: 928-944. [14] CHIOU I J, WANG K S, CHEN C H, et al. Lightweight aggregate made from sewage sludge and incinerated ash[J]. Waste Management, 2006, 26(12): 1453-1461. [15] RAMAMURTHY K, HARIKRISHNAN K I. Influence of binders on properties of sintered fly ash aggregate[J]. Cement and Concrete Composites, 2006, 28(1): 33-38. [16] 杨秀丽,崔 崇,崔晓昱,等.壳层增强人造硅酸盐骨料性能[J].科技导报,2014,32(25):26-31. YANG X L, CUI C, CUI X Y, et al. Properties of shell reinforced artificial silicate aggregate[J]. Science & Technology Review, 2014, 32(25): 26-31 (in Chinese). [17] 庞超明,吕梦媛,孙友康.核壳结构免烧轻骨料的制备与性能研究[J].硅酸盐通报,2016,35(7):2121-2127. PANG C M, LV M Y, SUN Y K. Preparation and properties of free-sintered lightweight aggregate with core-shell structure[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2121-2127 (in Chinese). [18] 杨秀丽,崔 崇,崔晓昱,等.高性能人造硅酸盐骨料及其混凝土的性能研究[J].科技导报,2014,32(23):50-54. YANG X L, CUI C, CUI X Y, et al. Properties of man-made silicate aggregate and the lightweight concrete[J]. Science & Technology Review, 2014, 32(23): 50-54 (in Chinese). [19] 唐国强,崔晓昱,顾敏佳,等.利用电石渣制备结构用硅酸盐陶粒的研究[J].中国氯碱,2017(7):41-44. TANG G Q, CUI X Y, GU M J, et al. Preparation of load-bearing carbide slag shell-aggregate and research of its properties[J]. China Chlor-Alkali, 2017(7): 41-44 (in Chinese). [20] GONZÁLEZ-CORROCHANO B, ALONSO-AZCÁRATE J, RODAS M, et al. Microstructure and mineralogy of lightweight aggregates produced from washing aggregate sludge, fly ash and used motor oil[J]. Cement and Concrete Composites, 2010, 32(9): 694-707. [21] HUANG C H, WANG S Y. Application of water treatment sludge in the manufacturing of lightweight aggregate[J]. Construction and Building Materials, 2013, 43: 174-183. [22] COLANGELO F, MESSINA F, CIOFFI R. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: technological assessment for the production of lightweight artificial aggregates[J]. Journal of Hazardous Materials, 2015, 299: 181-191. [23] JIANG Y, LING T C. Production of artificial aggregates from steel-making slag: influences of accelerated carbonation during granulation and/or post-curing[J]. Journal of CO2 Utilization, 2020, 36: 135-144. [24] WASSERMAN R, BENTUR A. Effect of lightweight fly ash aggregate microstructure on the strength of concretes[J]. Cement and Concrete Research, 1997, 27(4): 525-537. [25] CHIA K S, ZHANG M H. Water permeability and chloride penetrability of high-strength lightweight aggregate concrete[J]. Cement and Concrete Research, 2002, 32(4): 639-645. [26] HOLM T A, BREMNER T W, NEWMAN J B. Concrete bridge decks: lightweight aggregate concrete subject to severe weathering[J]. Concrete International, 1984, 6(6): 49-54. [27] REAL S, BOGAS J A, PONTES J. Structural lightweight aggregate concrete exposed to marine environment for 5 years[J]. Construction and Building Materials, 2021, 275: 122161. [28] HUANG L M, YU L, ZHANG H, et al. Composition and microstructure of 50-year lightweight aggregate concrete (LWAC) from Nanjing Yangtze River bridge (NYRB)[J]. Construction and Building Materials, 2019, 216: 390-404. [29] ZHANG H, HUANG L M, YU L, et al. Macromechanical properties and ITZ of lightweight aggregate concrete from the deck of Nanjing Yangtze River bridge after 50 years[J]. Journal of Materials in Civil Engineering, 2020, 32(5): 05020005. [30] 郑秀华.陶粒吸水返水特性及其对轻骨料混凝土结构与性能的影响[D].哈尔滨:哈尔滨工业大学,2005. ZHENG X H. Water absorption and return characteristics of ceramsite and its effect on structure and properties of lightweight aggregate concrete[D]. Harbin: Harbin Institute of Technology, 2005 (in Chinese). [31] 郑秀华,张宝生,葛 勇,等.不同吸水率的陶粒对轻集料混凝土性能的影响[C]//“第八届全国轻骨料及轻骨料混凝土学术讨论会”暨“第二届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集.宜昌,2006:203-207. ZHENG X H, ZHANG B S, GE Y, et al. Effect of different water absorption rate of ceramsite on performance of lightweight aggregate concrete[C]//Proceedings of the 8th National Symposium on Lightweight Aggregate and Lightweight Aggregate Concrete and the 2nd Symposium on Production and Application technology of Lightweight Aggregate Concrete. Yichang, 2006: 203-207 (in Chinese). [32] 吴 芳,谭盐宾,杨长辉,等.高强轻集料混凝土抗氯离子渗透性能试验研究[J].重庆建筑大学学报,2007,29(6):117-120. WU F, TAN Y B, YANG C H, et al. An experimental study of anti-chloride permeability of high-strength structural lightweight aggregate concrete[J]. Journal of Chongqing Jianzhu University, 2007, 29(6): 117-120 (in Chinese). [33] BENTZ D P, SNYDER K A. Protected paste volume in concrete: extension to internal curing using saturated lightweight fine aggregate[J]. Cement and Concrete Research, 1999, 29(11): 1863-1867. [34] 聂 帅.内养护改善蒸养混凝土热损伤机理及性能研究[D].武汉:武汉理工大学, 2017. NIE S. Study on improving thermal damage mechanism and properties of steam cured concrete by internal curing[D]. Wuhan: Wuhan University of Technology, 2017 (in Chinese). [35] NIE S, HU S G, WANG F Z, et al. Internal curing-a suitable method for improving the performance of heat-cured concrete[J]. Construction and Building Materials, 2016, 122: 294-301. [36] NIE S, ZHANG W Q, HU S G, et al. Improving the fluid transport properties of heat-cured concrete by internal curing[J]. Construction and Building Materials, 2018, 168: 522-531. [37] 张高展,葛竞成,丁庆军,等.轻质超高性能混凝土的制备及性能形成机理[J].硅酸盐学报,2021,49(2):381-390. ZHANG G Z, GE J C, DING Q J, et al. Preparation and formation mechanism of lightweight ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 381-390 (in Chinese). [38] 王发洲,杨 进,程 华,等.基于内部孔结构的功能型混凝土研究初探[J].建筑材料学报,2015,18(4):608-613+639. WANG F Z, YANG J, CHENG H, et al. Preliminary exploration on pore structural/functional integration for concrete[J]. Journal of Building Materials, 2015, 18(4): 608-613+639 (in Chinese). [39] WYRZYKOWSKI M, LURA P, PESAVENTO F, et al. Modeling of water migration during internal curing with superabsorbent polymers[J]. Journal of Materials in Civil Engineering, 2012, 24(8): 1006-1016. [40] JUSTS J, WYRZYKOWSKI M, WINNEFELD F, et al. Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio[J]. Journal of Thermal Analysis and Calorimetry, 2014, 115(1): 425-432. [41] WANG F Z, YANG J, HU S G, et al. Influence of superabsorbent polymers on the surrounding cement paste[J]. Cement and Concrete Research, 2016, 81: 112-121. [42] YANG J, WANG F Z, LIU Y P. Comparison of ordinary pores with internal cured pores produced by superabsorbent polymers[J]. Advanced Materials Research, 2015, 1129: 315-322. [43] SARKAR S L, SATISH C, LEIF B. Interdependence of microstructure and strength of structural lightweight aggregate concrete[J]. Cement and Concrete Composites, 1992, 14(4): 239-248. [44] NIE S, HU S G, WANG F Z, et al. Pozzolanic reaction of lightweight fine aggregate and its influence on the hydration of cement[J]. Construction and Building Materials, 2017, 153: 165-173. [45] 赵 都.C-A-S-H定向合成及其应用的基础研究[D].武汉:武汉理工大学, 2021. ZHAO D. Basic research on directional synthesis and application of C-A-S-H[D]. Wuhan: Wuhan University of Technology, 2021 (in Chinese). [46] ZHAO D, GAO Y N, NIE S, et al. Self-assembly of honeycomb-like calcium-aluminum-silicate-hydrate (C-A-S-H) on ceramsite sand and its application in photocatalysis[J]. Chemical Engineering Journal, 2018, 344: 583-593. [47] ZHAO D, LIU P, WANG F Z, et al. Versatile surface modification of ceramsite via honeycomb calcium-aluminum-silicate-hydrate and its functionalization by 3-thiocyanatopropyltriethoxysilane for enhanced cadmium(II) removal[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35(1): 71-80. [48] 杨婷婷.基于集料功能设计的水泥石界面性能研究[D].武汉:武汉理工大学,2010. YANG T T. The research on cement paste-aggregate interface based on functional design of aggregate[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). [49] HE Y J, LU L N, JIN S, et al. Conductive aggregate prepared using graphite and clay and its use in conductive mortar[J]. Construction and Building Materials, 2014, 53: 131-137. [50] WANG F Z, YANG L, WANG H, et al. Facile preparation of photocatalytic exposed aggregate concrete with highly efficient and stable catalytic performance[J]. Chemical Engineering Journal, 2015, 264: 577-586. [51] 丁庆军,张 勇,王发洲,等.高强轻集料混凝土桥面施工泵送技术[J].混凝土,2002(1):58-60. DING Q J, ZHANG Y, WANG F Z, et al. Pumping technology of high-strength light weight aggregate concrete on bridge construction[J]. Concrete, 2002(1): 58-60 (in Chinese). [52] 曾春发,曾耀广,关淑君,等.轻骨料混凝土在珠海国际会议中心高层建筑中的应用[C]//2004“第七届全国轻骨料混凝土学术讨论会”暨“第一届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集.南京,2004:384-392. ZENG C F, ZENG Y G, GUAN S J, et al. Application of lightweight aggregate concrete in high-rise building of zhuhai international conference center[C]//Proceedings of the 7th National Symposium on Lightweight Aggregate Concrete and the 1st Cross-Strait Symposium on Production and Application technology of Lightweight Aggregate Concrete. Nanjing, 2004: 384-392 (in Chinese). [53] 秦国新.CL50高强度轻骨料混凝土在大跨度现浇结构中的应用[J].混凝土与水泥制品,2000(5):39. QIN G X. Application of CL50 high strength lightweight aggregate concrete in large span cast-in-place structure [J]. Chinal Concrete and Cement Products, 2000(5): 39 (in Chinese). [54] 李昕成,丁建彤,李章建.结构粘土陶粒混凝土的泵送施工应用[J].混凝土,2005(11):79-82 LI X C, DING J T, LI Z J. Case studies of pumping structural lightweight aggregate concrete based on expanded clay[J]. Concrete, 2005(11): 79-82 (in Chinese) [55] 余稚明,方泰生,李昕成,等.泵送高强轻骨料混凝土在大跨度预应力框架结构中的设计应用[C]//2004“第七届全国轻骨料混凝土学术讨论会”暨“第一届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集.南京,2004:424-426. YU Z M, FANG T S, LI X C, et al. Design and application of pumped lightweight aggregate concrete in long-span prestressed frame structures[C]//Proceedings of the 7th National Symposium on Lightweight Aggregate Concrete and the 1st Cross-Taiwan Taiwan Symposium on Production and Application of Lightweight Aggregate Concrete. Nanjing, 2004: 424-426 (in Chinese). [56] 李路明,史 忠,张 楠.泵送轻集料混凝土的研究及工程应用[C]//全国高性能混凝土和矿物掺合料的研究与工程应用技术交流会论文集.珠海,2006:450-456. LI L M, SHI Z, ZHANG N. Research and engineering application of pumped lightweight aggregate concrete[C]//Proceedings of the National Technical Exchange on Research and Engineering Application of High Performance Concrete and Mineral Admixtures. Zhuhai, 2006: 450-456 (in Chinese). [57] 王国荣.100米高强泵送陶粒混凝土的应用(滨江国际花园陶粒砼的应用)[C]//“第八届全国轻骨料及轻骨料混凝土学术讨论会” 暨 “第二届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集.宜昌,2006. WANG G R. Application of 100 meters high strength pumped ceramsite concrete (application of ceramsite concrete in Binjiang International Garden)[C]//Proceedings of the “The 8th National Symposium on Lightweight Aggregate and Lightweight Aggregate Concrete” and “The 2nd Cross-Strait Seminar on Production and Application Technology of Lightweight Aggregate Concrete”. Yichang, 2006 (in Chinese). [58] 黄启政,李 强.预拌陶粒轻骨料混凝土配制及泵送施工的研究与工程应用[C]//第十七届华东六省一市建筑施工技术交流会论文集.青岛,2008:466-470. HUANG Q Z, LI Q. Research and engineering application of preparation and pumping construction of pre-mixed ceramsite lightweight aggregate concrete[C]//Proceedings of the 17th East China Six Provinces and one City Building Construction Technical Exchange Conference. Qingdao, 2008: 466-470 (in Chinese). [59] 高育欣,王 军,陈 景,等.泵送轻骨料混凝土的配制及应用[J].施工技术,2011,40(5):95-97. GAO Y X, WANG J, CHEN J, et al. Preparation and application of pumping lightweight aggregate concrete[J]. Construction Technology, 2011, 40(5): 95-97 (in Chinese). [60] 王 军,高育欣,胡国付,等.大流态泵送轻骨料混凝土的配制及其在高层建筑施工中的应用[C]//超高层混凝土泵送与超高性能混凝土技术的研究与应用国际研讨会论文集.广州,2008. WANG J, GAO Y X, HU G F, et al. Preparation of lightweight aggregate concrete pumped in large flow state and its application in high-rise building construction[C]//Proceedings of the International Symposium on Research and Application of High-Rise Concrete Pumping and Ultra-High Performance Concrete Technology. Guangzhou, 2008 (in Chinese). [61] 车建利,黑伟伟,刘桂宾.泵送免振捣轻骨料混凝土在工程中的应用[J].青岛理工大学学报,2013,34(1):118-121. CHE J L, HEI W W, LIU G B. Application of pumping vibration-free lightweight aggregate concrete in the project[J]. Journal of Qingdao Technological University, 2013, 34(1): 118-121 (in Chinese). [62] 王龙志,林开成,张海霞,等.轻骨料混凝土泵送技术的研究与应用[J].混凝土与水泥制品,2005(1):16-18+24. WANG L Z, LIN K C, ZHANG H X, et al. Investigation and application of pumping technology of lightweight aggregate concrete[J]. China Concrete and Cement Products, 2005(1): 16-18+24 (in Chinese). [63] 邓培春,覃善总.泵送轻骨料混凝土的应用[J].广东建材,2017,33(7):15-17. DENG P C, QIN S Z. Application of pumping lightweight aggregate concrete[J]. Guangdong Building Materials, 2017, 33(7): 15-17 (in Chinese). [64] 张保平.泵送LC25陶粒混凝土的配制及工程应用[J].商品混凝土,2017(3):70-72. ZHANG B P. Preparation and engineering application of pumping LC25 ceramsite concrete[J]. Commercial Concrete, 2017(3): 70-72 (in Chinese). [65] 李昕成,丁建彤,钟 阳,等.结构轻骨料混凝土在昆明地区的工程应用及社会经济效益[C]//第五届全国高性能混凝土学术交流会论文集.沈阳,2004:474-479. LI X C, DING J T, ZHONG Y, et al. Engineering application and social and economic benefits of structural lightweight aggregate concrete in kunming area[C]//Proceedings of the fifth National High Performance Concrete Academic Exchange Conference. Shenyang, 2004: 474-479 (in Chinese). [66] 徐湘生,王 键.北京东方广场工程轻质混凝土施工[J].建筑技术,2000,31(1):21. XU X S, WANG J. Construction of Beijing oriental square project's light concrete[J]. Architecture Technology, 2000, 31(1): 21 (in Chinese). [67] 董 祥,祁 兵.轻骨料施工预处理方法及其对高强轻骨料混凝土施工性能影响的模拟试验[J].混凝土,2009(2):98-101. DONG X, QI B. Lightweight aggregate construction pre-treatment methods and stimulated experiment of their influence on construction property of high strength lightweight aggregate concrete[J]. Concrete, 2009(2): 98-101 (in Chinese). [68] 尚培东,董 祥.轻骨料施工预处理方法对高强轻骨料混凝土各龄期强度影响的试验研究[J].四川建筑科学研究,2011,37(3):201-204. SHANG P D, DONG X. Experiment research on lightweight aggregate construction pre-treatment methods' influence on different age strengths of high-strength lightweight aggregate concrete[J]. Sichuan Building Science, 2011, 37(3): 201-204 (in Chinese). [69] 包嘉诚.超高层泵送高强轻集料混凝土制备及其流变性能调控[D].武汉:武汉理工大学,2019. BAO J C. Preparation of high-strength lightweight aggregate concrete by super high-rise pumping and its rheological property control[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). [70] 李书明,曾 志,刘 竞,等.LC60级高强自密实轻骨料混凝土配制技术[J].铁道建筑,2020,60(10):159-163. LI S M, ZENG Z, LIU J, et al. Preparation technology of LC60 high strength self-compacting lightweight aggregate concrete[J]. Railway Engineering, 2020, 60(10): 159-163 (in Chinese). [71] ASLANI F, MA G W. Normal and high-strength lightweight self-compacting concrete incorporating perlite, scoria, and polystyrene aggregates at elevated temperatures[J]. Journal of Materials in Civil Engineering, 2018, 30(12): 04018328. [72] TING T Z H, RAHMAN M E, LAU H H, et al. Recent development and perspective of lightweight aggregates based self-compacting concrete[J]. Construction and Building Materials, 2019, 201: 763-777. [73] 郭玉顺,丁建彤,木村薰,等.高性能轻骨料与普通轻骨料的性能比较[J].混凝土,2000(6):22-26. GUO Y S, DING J T, KIMURA K, et al. Comparison of performance between high performance lightweight aggregate and ordinary lightweight aggregate[J]. Concrete, 2000(6): 22-26 (in Chinese). [74] 郭玉顺,木村薰,李民伟,等.高强高耐久性轻骨料混凝土的性能[J].混凝土,2000(10):8-13+30. GUO Y S, KIMURA K, LI M W, et al. Performance of lightweight aggregate concrete with high strength and durability[J]. Concrete, 2000(10): 8-13+30 (in Chinese). [75] 李应权,扈士凯,迟碧川,等.我国轻骨料混凝土及其新产品发展动向与标准体系概述[J].混凝土世界,2016(11):40-47. LI Y Q, HU S K, CHI B C, et al. Overview of the development trend and standard system of lightweight aggregate concrete and its new products in China [J]. China Concrete, 2016(11): 40-47 (in Chinese). [76] 吴会阁,谌会芹,王晓中,等.重混凝土的研究与工程应用[J].混凝土,2011(11):107-109. WU H G, CHEN H Q, WANG X Z, et al. Research and engineering application of heavy concrete[J]. Concrete, 2011(11): 107-109 (in Chinese). [77] 孙 蓓,焦楚杰.防辐射混凝土的研究现状与发展趋势[J].混凝土,2017(12):143-146. SUN B, JIAO C J. Research status and development trend of radiation shielding concrete[J]. Concrete, 2017(12): 143-146 (in Chinese). [78] 丁庆军,张立华,胡曙光,等.防辐射混凝土及核固化材料研究现状与发展[J].武汉理工大学学报,2002,24(2):16-19. DING Q J, ZHANG L H, HU S G, et al. The research situation of anti-radiative concrete and solidified materials for the nuclear wastes[J]. Journal of Wuhan University of Technology, 2002, 24(2): 16-19 (in Chinese). [79] 潘智生,赵 晖,寇世聪.防辐射混凝土研究现状、存在问题及发展趋势[J].武汉理工大学学报,2011,33(1):45-51. PAN Z S, ZHAO H, KOU S C. Research status, existing problems and development trend of radiation-proof concrete[J]. Journal of Wuhan University of Technology, 2011, 33(1): 45-51 (in Chinese). [80] BOUALI E, AYADI A, KADRI E H, et al. Rheological and mechanical properties of heavy density concrete including barite powder[J]. Arabian Journal for Science and Engineering, 2020, 45(5): 3999-4011. [81] 张 勇,鲁哓辉,谢慧东.钢渣粗集料在泵送配重混凝土中的应用试验研究[J].粉煤灰,2015,27(2):18-21. ZHANG Y, LU X H, XIE H D. Experimental study of application of steel-slag coarse aggregate in pumping heavy concrete[J]. Coal Ash, 2015, 27(2): 18-21 (in Chinese). [82] 佘子盈.重晶石防辐射混凝土设计及性能研究[J].混凝土,2013(1):156-158. SHE Z Y. Study on design and performance of the radiation shielding barite concrete[J]. Concrete, 2013(1): 156-158 (in Chinese). [83] 谢洪雷,赵建佩,钱 欣,等.骨料级配对配重混凝土密度及抗压强度影响的试验研究[J].石油工程建设,2013,39(3):13-16+23. XIE H L, ZHAO J P, QIAN Y X, et al. Experimental study on the influence of aggregate gradation on the density and compressive strength of counterweight concrete[J]. Petroleum Engineering Construction, 2013, 39(3): 13-16+23 (in Chinese). [84] 高育欣,吴海泳,林喜华,等.重晶石防辐射泵送混凝土的试验研究与工程应用[J].混凝土,2011(10):90-92. GAO Y X, WU H Y, LIN X H, et al. Experiment research and engineering application of barite anti-radiation pump concrete[J]. Concrete, 2011(10): 90-92 (in Chinese). [85] 权伟博,麻鹏飞.大体积防辐射混凝土的试验研究及工程应用[J].新型建筑材料,2019,46(1):29-32+61. QUAN W B, MA P F. Experimental research and application of large volume anti-radiation concrete[J]. New Building Materials, 2019, 46(1): 29-32+61 (in Chinese). [86] 尚建丽,邢琳琳.钢渣粗骨料混凝土界面过渡区的研究[J].建筑材料学报,2013,16(2):217-220. SHANG J L, XING L L. Study on interfacial transition zone of steel slag coarse aggregate concrete[J]. Journal of Building Materials, 2013, 16(2): 217-220 (in Chinese). [87] KAN Y C, PEI K C, CHANG C L. Strength and fracture toughness of heavy concrete with various iron aggregate inclusions[J]. Nuclear Engineering and Design, 2004, 228(1/2/3): 119-127. [88] 董汇标.防辐射混凝土制备与性能研究[D].北京:北京建筑大学,2016. DONG H B. Study on preparation and properties of radiation protection concrete[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2016 (in Chinese). [89] RASOUL A E S M, ZAREEI S A, MADHKHAN M, et al. Mechanical and gamma-ray shielding properties and environmental benefits of concrete incorporating GGBFS and copper slag[J]. Journal of Building Engineering, 2021, 33: 101615. [90] KHALAF M A, CHEAH C B, RAMLI M, et al. Engineering and gamma-ray attenuation properties of steel furnace slag heavyweight concrete with nano calcium carbonate and silica[J]. Construction and Building Materials, 2021, 267: 120878. [91] BAN C C, KHALAF M A, RAMLI M, et al. Effect of nano-silica slurry on engineering, X-ray, and γ-ray attenuation characteristics of steel slag high-strength heavyweight concrete[J]. Nanotechnology Reviews, 2020, 9(1): 1245-1264. [92] BAN C C, KHALAF M A, RAMLI M, et al. Modern heavyweight concrete shielding: principles, industrial applications and future challenges; review[J]. Journal of Building Engineering, 2021, 39: 102290. [93] KHALAF M A, CHEAH C B, RAMLI M, et al. Effect of nano zinc oxide and silica on mechanical, fluid transport and radiation attenuation properties of steel furnace slag heavyweight concrete[J]. Construction and Building Materials, 2021, 274: 121785. [94] 丛成河,伍崇明,谌 甫,等.泵送重混凝土的研究与应用[J].混凝土,2007(3):78-81. CONG C H, WU C M, CHEN F, et al. Study and application of the heavy concrete of pump sending[J]. Concrete, 2007(3): 78-81 (in Chinese). [95] 王晓中.重混凝土性能的试验研究与应用[D].北京:北京工业大学,2012. WANG X Z. Research and engineering application of heavy concrete[D]. Beijing: Beijing University of Technology, 2012 (in Chinese). [96] 王 晶,童文洪,何更新,等.防辐射混凝土配制技术的研究进展及存在的问题[C]//第三届全国特种混凝土技术及首届全国沥青混凝土技术学术交流会暨中国土木工程学会混凝土质量专业委员会2012年年会论文集.深圳,2012. WANG J, TONG W H, HE G X, et al. Research progress and existing problems of radiation-proof concrete preparation technology[C]//Proceedings of the 3rd National Special Concrete Technology and the 1st National Asphalt Concrete Technology Academic Exchange Conference and the 2012 Annual Meeting of Concrete Quality Professional Committee of China Civil Engineering Society. Shenzhen, 2012 (in Chinese). [97] 邹秋林,李 军,卢忠远.防辐射混凝土高性能化研究进展[J].混凝土,2012(1):6-9. ZOU Q L, LI J, LU Z Y. High performance research situation of radiation shielding concrete[J]. Concrete, 2012(1): 6-9 (in Chinese). [98] 王龙志,吕世军,李宗才.泵送重晶石防辐射混凝土在千佛山医院直线加速器机房工程中的应用[J].山东建材,2007(4):37-40. WANG L Z, LV S J, LI Z C. Application of pumping barite radiation-proof concrete in linac machine room engineering of qianfoshan hospital[J]. Shandong Building Materials, 2007(4): 37-40 (in Chinese). [99] 伍崇明.核工程抗强辐射屏蔽混凝土试验研究[D].长沙:中南大学,2008. WU C M. The study on strong radiation shielding concrete test of nuclear engineering[D]. Changsha: Central South University, 2008 (in Chinese). [100] 王志宏,王子明,裴学东,等.C80级泵送重混凝土工作性研究与实践[J].混凝土与水泥制品,2000(3):16-18. WANG Z H, WANG Z M, PEI X D, et al. Research and practice on workability of C80 grade pumping heavy concrete[J]. Chinal Concrete and Cement Products, 2000(3): 16-18 (in Chinese). [101] 吴文贵,顾晴霞,王 军,等.重晶石混凝土施工及质量控制[J].混凝土,2006(7):36-38+46. WU W G, GU Q X, WANG J, et al. Construction and quality control of concrete using barite as aggregate[J]. Concrete, 2006(7): 36-38+46 (in Chinese). [102] 韩 令,谢咸颂,严江怀,等.重晶石防辐射混凝土施工质量控制[J].广东建材,2019,35(9):48-49+58. HAN L, XIE X S, YAN J H, et al. Construction quality control of barite radiation-proof concrete[J]. Guangdong Building Materials, 2019, 35(9): 48-49+58 (in Chinese). [103] 彭瑞鸿.C30泵送防辐射混凝土的研究与应用[J].广东建材,2020,36(6):19-20. PENG R H. Research and application of C30 pumping radiation-proof concrete[J]. Guangdong Building Materials, 2020, 36(6): 19-20 (in Chinese). [104] 翁云翔.全钢渣重混凝土配合比设计方法与试验分析[J].四川建材,2017,43(10):14-15. WENG Y X. Matching design method and experimental analysis of full steel slag heavy concrete[J]. Sichuan Building Materials, 2017, 43(10): 14-15 (in Chinese). [105] 张 弯,李 威,王丽丽,等.低成本泵送高流态配重混凝土在北京大兴国际机场中的应用[J].建筑技术,2019,50(8):959-961. ZHANG W, LI W, WANG L L, et al. Application of low cost pumping high flow counterweight concrete in Beijing Daxing international airport[J]. Architecture Technology, 2019, 50(8): 959-961 (in Chinese). [106] 李长坤,张爱想.钢箱梁两端配重混凝土配合比设计与应用[J].混凝土世界,2019(7):84-87. LI C K, ZHANG A X. Design and application of proportion of weighted concrete at both ends of steel box girder[J]. China Concrete, 2019(7): 84-87 (in Chinese). [107] 崔嵩岭.浅谈配重混凝土的设计与应用[J].中国新技术新产品,2013(8):16. CUI S L. Design and application of counterweight concrete[J]. China New Technologies and Products, 2013(8): 16 (in Chinese). [108] 潘文杰,王玉泉,孙晓明.大体积泵送重混凝土的试验研究与工程应用[C]//2008中国商品混凝土可持续发展论坛暨第五届全国商品混凝土技术交流大会论文集.昆明,2008:406-411. PAN W J, WANG Y Q, SUN X M. Experimental study and engineering application of large volume pumping heavy concrete [C]//Proceedings of the 2008 China Commercial Concrete Sustainable Development Forum and the 5th National Commercial Concrete Technology Exchange Conference. Kunming, 2008: 406-411 (in Chinese). [109] 张伟强.大体积防辐射泵送重混凝土在芜湖弋矶山医院工程中的应用[J].福建建筑,2009(12):54-55. ZHANG W Q. Massive radiation pumping concrete projects in Wuhu Yijishan hospital[J]. Fujian Architecture & Construction, 2009(12): 54-55 (in Chinese). [110] SHI C J, LI Y K, ZHANG J K, et al. Performance enhancement of recycled concrete aggregate: a review[J]. Journal of Cleaner Production, 2016, 112: 466-472. [111] 刘数华,冷发光.再生混凝土技术[M].北京:中国建材工业出版社, 2007. LIU S H, LENG F G. Recycled concrete technology[M]. Beijing: China Building Materials Industry Press, 2007 (in Chinese). [112] 张 军.基于花岗岩母岩的再生骨料缺陷对再生混凝土力学性及耐久性的影响[D].北京:北京交通大学,2015. ZHANG J. Influence of recycled aggregate defects on the mechanical and durability properties of recycled aggregate concrete prepared with crushed granite-aggregate concrete[D]. Beijing: Beijing Jiaotong University, 2015 (in Chinese). [113] 全洪珠.国外再生混凝土的应用概述及技术标准[J].青岛理工大学学报,2009,30(4):87-92+126. QUAN H Z. Application overview and technical standards of recycled concrete in other countries[J]. Journal of Qingdao Technological University, 2009, 30(4): 87-92+126 (in Chinese). [114] 王春福,王瑜玲,张飞燕.建筑垃圾再生骨料强化改性研究进展[J].硅酸盐通报,2020,39(8):2486-2491. WANG C F, WANG Y L, ZHANG F Y. Research progress on reinforcement and modification of recycled concrete aggregate from construction waste[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2486-2491 (in Chinese). [115] GÓMEZ-SOBERÓN J M V. Porosity of recycled concrete with substitution of recycled concrete aggregate: an experimental study[J]. Cement and Concrete Research, 2002, 32(8): 1301-1311. [116] AJDUKIEWICZ A, KLISZCZEWICZ A. Influence of recycled aggregates on mechanical properties of HS/HPC[J]. Cement and Concrete Composites, 2002, 24(2): 269-279. [117] PANDURANGAN K, DAYANITHY A, OM PRAKASH S. Influence of treatment methods on the bond strength of recycled aggregate concrete[J]. Construction and Building Materials, 2016, 120: 212-221. [118] BRAVO M, DE BRITO J, PONTES J, et al. Durability performance of concrete with recycled aggregates from construction and demolition waste plants[J]. Construction and Building Materials, 2015, 77: 357-369. [119] HU J, WANG Z, KIM Y. Feasibility study of using fine recycled concrete aggregate in producing self-consolidation concrete[J]. Journal of Sustainable Cement-Based Materials, 2013, 2(1): 20-34. [120] POON C S, SHUI Z H, LAM L, et al. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete[J]. Cement and Concrete Research, 2004, 34(1): 31-36. [121] 张学兵.再生混凝土配合比及拉压强度的实验研究[D].湘潭:湘潭大学,2005. ZHANG X B. Experimental study on mix proportion and compressive and tensile strength of recycled concrete[D]. Xiangtan: Xiangtan University, 2005 (in Chinese). [122] TOPÇU I B, GÜNÇAN N F. Using waste concrete as aggregate[J]. Cement and Concrete Research, 1995, 25(7): 1385-1390. [123] TOPÇU I B. Physical and mechanical properties of concretes produced with waste concrete[J]. Cement and Concrete Research, 1997, 27(12): 1817-1823. [124] 侯永利,郑 刚.再生骨料混凝土不同龄期的力学性能[J].建筑材料学报,2013,16(4):683-687. HOU Y L, ZHENG G. Mechanical properties of recycled aggregate concrete in different age[J]. Journal of Building Materials, 2013, 16(4): 683-687 (in Chinese). [125] XUAN D X, ZHAN B J, POON C S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates[J]. Cement and Concrete Composites, 2016, 65: 67-74. [126] ZAHARIEVA R, BUYLE-BODIN F, SKOCZYLAS F, et al. Assessment of the surface permeation properties of recycled aggregate concrete[J]. Cement and Concrete Composites, 2003, 25(2): 223-232. [127] VÁZQUEZ E, BARRA M, APONTE D, et al. Improvement of the durability of concrete with recycled aggregates in chloride exposed environment[J]. Construction and Building Materials, 2014, 67: 61-67. [128] 申 健,牛荻涛,王 艳,等.再生混凝土耐久性能研究进展[J].材料导报,2016,30(5):89-94+100. SHEN J, NIU D T, WANG Y, et al. Durability research status of recycled aggregate concrete[J]. Materials Review, 2016, 30(5): 89-94+100 (in Chinese). [129] KWAN W H, RAMLI M, KAM K J, et al. Influence of the amount of recycled coarse aggregate in concrete design and durability properties[J]. Construction and Building Materials, 2012, 26(1): 565-573. [130] SILVA R V, NEVES R, DE BRITO J, et al. Carbonation behaviour of recycled aggregate concrete[J]. Cement and Concrete Composites, 2015, 62: 22-32. [131] 安新正,易 成,刘 燕,等.硫酸盐环境下再生混凝土性能试验研究[J].混凝土,2010(7):31-33. AN X Z, YI C, LIU Y, et al. Experiment research on properties of recycled concrete in sulfate environment[J]. Concrete, 2010(7): 31-33 (in Chinese). [132] 岳公冰.再生混凝土多重界面结构与性能损伤机理研究[D].青岛:青岛理工大学,2018. YUE G B. Study on the recycled concrete multi-interface structure and the damage mechanism of performance[D]. Qingdao: Qingdao Tehcnology University, 2018 (in Chinese). [133] LI L, XUAN D X, SOJOBI A O, et al. Development of nano-silica treatment methods to enhance recycled aggregate concrete[J]. Cement and Concrete Composites, 2021, 118: 103963. [134] XIAO J Z, LI W G, SUN Z H, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation[J]. Cement and Concrete Composites, 2013, 37: 276-292. [135] SIDOROVA A, VAZQUEZ-RAMONICH E, BARRA-BIZINOTTO M, et al. Study of the recycled aggregates nature's influence on the aggregate-cement paste interface and ITZ[J]. Construction and Building Materials, 2014, 68: 677-684. [136] 肖建庄,刘 琼,李文贵,等.再生混凝土细微观结构和破坏机理研究[J].青岛理工大学学报,2009,30(4):24-30. XIAO J Z, LIU Q, LI W G, et al. On the micro-and meso-structure and failure mechanism of recycled concrete[J]. Journal of Qingdao Technological University, 2009, 30(4): 24-30 (in Chinese). [137] ABBAS A, FATHIFAZL G, FOURNIER B, et al. Quantification of the residual mortar content in recycled concrete aggregates by image analysis[J]. Materials Characterization, 2009, 60(7): 716-728. [138] DE JUAN M S, GUTIÉRREZ P A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate[J]. Construction and Building Materials, 2009, 23(2): 872-877. [139] KATKHUDA H, SHATARAT N. Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment[J]. Construction and Building Materials, 2017, 140: 328-335. [140] ZHAO Z H, WANG S D, LU L C, et al. Evaluation of pre-coated recycled aggregate for concrete and mortar[J]. Construction and Building Materials, 2013, 43: 191-196. [141] SONG X F, QIAO P Z, WEN H F. Recycled aggregate concrete enhanced with polymer aluminium sulfate[J]. Magazine of Concrete Research, 2015, 67(10): 496-502. [142] WANG C H, XIAO J Z, ZHANG G Z, et al. Interfacial properties of modeled recycled aggregate concrete modified by carbonation[J]. Construction and Building Materials, 2016, 105: 307-320. [143] SHI C J, WU Z M, CAO Z J, et al. Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry[J]. Cement and Concrete Composites, 2018, 86: 130-138. [144] LU B, SHI C J, CAO Z J, et al. Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete[J]. Journal of Cleaner Production, 2019, 233: 421-428. [145] ZHAN B J, XUAN D X, ZENG W L, et al. Carbonation treatment of recycled concrete aggregate: effect on transport properties and steel corrosion of recycled aggregate concrete[J]. Cement and Concrete Composites, 2019, 104: 103360. [146] CHINZORIGT G, LIM M K, YU M, et al. Strength, shrinkage and creep and durability aspects of concrete including CO2 treated recycled fine aggregate[J]. Cement and Concrete Research, 2020, 136: 106062. [147] ZHANG J K, SHI C J, LI Y K, et al. Performance enhancement of recycled concrete aggregates through carbonation[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015029. [148] XUAN D X, ZHAN B J, POON C S. Development of a new generation of eco-friendly concrete blocks by accelerated mineral carbonation[J]. Journal of Cleaner Production, 2016, 133: 1235-1241. [149] WANG B, YAN L B, FU Q N, et al. A comprehensive review on recycled aggregate and recycled aggregate concrete[J]. Resources, Conservation and Recycling, 2021, 171: 105565. [150] SARAVANAKUMAR P, ABHIRAM K, MANOJ B. Properties of treated recycled aggregates and its influence on concrete strength characteristics[J]. Construction and Building Materials, 2016, 111: 611-617. [151] TAM V W Y, TAM C M, LE K N. Removal of cement mortar remains from recycled aggregate using pre-soaking approaches[J]. Resources, Conservation and Recycling, 2007, 50(1): 82-101. [152] WANG L, WANG J L, QIAN X, et al. An environmentally friendly method to improve the quality of recycled concrete aggregates[J]. Construction and Building Materials, 2017, 144: 432-441. [153] AKBARNEZHAD A, ONG K C G, ZHANG M H, et al. Microwave-assisted beneficiation of recycled concrete aggregates[J]. Construction and Building Materials, 2011, 25(8): 3469-3479. [154] 郭远新,李秋义,汪卫琴,等.再生粗骨料品质提升技术研究[J].混凝土,2015(6):134-138. GUO Y X, LI Q Y, WANG W Q, et al. Research on recycled coarse aggregate quality of enhancement technology[J]. Concrete, 2015(6): 134-138 (in Chinese). [155] LARBI J A, HEIJNEN W M M, BROUWER J P, et al. Preliminary laboratory investigation of thermally treated recycled concrete aggregate for general use in concrete[J]. Waste Management Series, 2000, 1: 129-139. [156] SPAETH V, DJERBI TEGGUER A. Improvement of recycled concrete aggregate properties by polymer treatments[J]. International Journal of Sustainable Built Environment, 2013, 2(2): 143-152. [157] KOU S C, POON C S. Properties of concrete prepared with PVA-impregnated recycled concrete aggregates[J]. Cement and Concrete Composites, 2010, 32(8): 649-654. [158] MUKHARJEE B B, BARAI S V. Influence of incorporation of nano-silica and recycled aggregates on compressive strength and microstructure of concrete[J]. Construction and Building Materials, 2014, 71: 570-578. [159] KONTOLEONTOS F, TSAKIRIDIS P E, MARINOS A, et al. Influence of colloidal nanosilica on ultrafine cement hydration: physicochemical and microstructural characterization[J]. Construction and Building Materials, 2012, 35: 347-360. [160] SCHWARZ N, CAM H, NEITHALATH N. Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash[J]. Cement and Concrete Composites, 2008, 30(6): 486-496. [161] LI W G, XIAO J Z, SUN Z H, et al. Interfacial transition zones in recycled aggregate concrete with different mixing approaches[J]. Construction and Building Materials, 2012, 35: 1045-1055. [162] TAM V W Y, GAO X F, TAM C M. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach[J]. Cement and Concrete Research, 2005, 35(6): 1195-1203. [163] SONG B X, SHI C J, HU X, et al. Effect of early CO2 curing on the chloride transport and binding behaviors of fly ash-blended Portland cement[J]. Construction and Building Materials, 2021, 288: 123113. [164] OUYANG K, SHI C J, CHU H Q, et al. An overview on the efficiency of different pretreatment techniques for recycled concrete aggregate[J]. Journal of Cleaner Production, 2020, 263: 121264. [165] ZHAN B J, POON C S, LIU Q, et al. Experimental study on CO2 curing for enhancement of recycled aggregate properties[J]. Construction and Building Materials, 2014, 67: 3-7. [166] PAN X Y, SHI C J, HU X, et al. Effects of CO2 surface treatment on strength and permeability of one-day-aged cement mortar[J]. Construction and Building Materials, 2017, 154: 1087-1095. [167] FANG Y F, CHANG J. Microstructure changes of waste hydrated cement paste induced by accelerated carbonation[J]. Construction and Building Materials, 2015, 76: 360-365. [168] ZHANG J K, SHI C J, LI Y K, et al. Influence of carbonated recycled concrete aggregate on properties of cement mortar[J]. Construction and Building Materials, 2015, 98: 1-7. [169] XUAN D X, ZHAN B J, POON C S. Durability of recycled aggregate concrete prepared with carbonated recycled concrete aggregates[J]. Cement and Concrete Composites, 2017, 84: 214-221. [170] ZHAN B J, XUAN D X, POON C S, et al. Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates[J]. Cement and Concrete Composites, 2016, 71: 122-130. [171] OUYANG X W, WANG L Q, XU S D, et al. Surface characterization of carbonated recycled concrete fines and its effect on the rheology, hydration and strength development of cement paste[J]. Cement and Concrete Composites, 2020, 114: 103809. [172] ZHAN B J, XUAN D X, POON C S, et al. Characterization of interfacial transition zone in concrete prepared with carbonated modeled recycled concrete aggregates[J]. Cement and Concrete Research, 2020, 136: 106175. [173] LIU S H, SHEN P L, XUAN D X, et al. A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate[J]. Cement and Concrete Composites, 2021, 118: 103988. [174] SHI C J, HE F Q, WU Y Z. Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures[J]. Construction and Building Materials, 2012, 26(1): 257-267. [175] SHEN P L, SUN Y J, LIU S H, et al. Synthesis of amorphous nano-silica from recycled concrete fines by two-step wet carbonation[J]. Cement and Concrete Research, 2021, 147: 106526. [176] ZAJAC M, SKIBSTED J, DURDZINSKI P, et al. Kinetics of enforced carbonation of cement paste[J]. Cement and Concrete Research, 2020, 131: 106013. [177] ZHAN B J, XUAN D X, POON C S, et al. Mechanism for rapid hardening of cement pastes under coupled CO2-water curing regime[J]. Cement and Concrete Composites, 2019, 97: 78-88. [178] LOTFI S, DEJA J, REM P, et al. Mechanical recycling of EOL concrete into high-grade aggregates[J]. Resources, Conservation and Recycling, 2014, 87: 117-125. [179] VERIAN K P, ASHRAF W, CAO Y Z. Properties of recycled concrete aggregate and their influence in new concrete production[J]. Resources, Conservation and Recycling, 2018, 133: 30-49. [180] KOU S C, ZHAN B J, POON C S. Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates[J]. Cement and Concrete Composites, 2014, 45: 22-28. |
[1] | 覃潇, 许婕婷, 申爱琴, 吕政桦, 谢政专. 自养护路面混凝土抗盐冻性能及疲劳特性[J]. 硅酸盐通报, 2021, 40(8): 2784-2793. |
[2] | 范小春, 张雯静, 梁天福, 陈凯风. 回收轮胎钢纤维再生骨料混凝土基本力学性能试验研究[J]. 硅酸盐通报, 2021, 40(7): 2331-2340. |
[3] | 李书明, 郑新国, 刘竞, 谢永江, 胡家林, 张旭. 钢管自密实轻骨料混凝土变形性能试验研究[J]. 硅酸盐通报, 2021, 40(5): 1497-1502. |
[4] | 陈志武. 饱和面干再生细骨料对超高性能混凝土流动度及强度的影响[J]. 硅酸盐通报, 2021, 40(5): 1503-1509. |
[5] | 朱星曈, 耿欧, 朱思远. 废轮胎橡胶混凝土界面过渡区特征试验研究[J]. 硅酸盐通报, 2021, 40(2): 573-578. |
[6] | 黄伟;葛进进;方张平;张阳阳. 钢纤维补偿收缩再生混凝土制备及性能[J]. 硅酸盐通报, 2020, 39(9): 2789-2794. |
[7] | 胡志;毛丽璇;刘清风. 再生骨料混凝土抗氯离子侵蚀的多相数值研究[J]. 硅酸盐通报, 2020, 39(8): 2425-2432. |
[8] | 李朝元;刘赞群;陈娟;朱嘉慧;周蕴婵. 水泥-乳化沥青-橡胶颗粒砂浆拉伸性能研究[J]. 硅酸盐通报, 2020, 39(8): 2549-2556. |
[9] | 高嵩;宫尧尧;班顺莉;侯双明. 离子侵蚀对再生混凝土多重界面区微观形貌影响[J]. 硅酸盐通报, 2020, 39(8): 2567-2573. |
[10] | 李恒;王家滨;郭庆军;张凯峰;侯泽宇. 矿物掺合料再生混凝土力学性能研究[J]. 硅酸盐通报, 2020, 39(8): 2608-2614. |
[11] | 晏方;陈宇良;陈宗平;刘杰;黄芳玮. 粉煤灰陶粒轻骨料混凝土循环受压力学性能试验研究[J]. 硅酸盐通报, 2020, 39(8): 2615-2621. |
[12] | 焦隽隽;朱俊锋. 再生混凝土冻融损伤可靠性分析[J]. 硅酸盐通报, 2020, 39(4): 1145-1152. |
[13] | 牛建刚;边钰;刘威亨;李京军. 高强轻骨料混凝土配合比设计方法及试验研究[J]. 硅酸盐通报, 2020, 39(11): 3480-3487. |
[14] | 申艳军;张欢;潘佳;罗滔;张凯峰;王旭;郝建帅. 混凝土界面过渡区微-细观结构识别及形成机制研究进展[J]. 硅酸盐通报, 2020, 39(10): 3055-3069. |
[15] | 王新杰;吴永康;朱平华. 粘附砂浆含量对再生骨料混凝土抗碳化性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3273-3279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||