硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (9): 2856-2870.
徐翔波1, 于泳1, 金祖权1, 朱崇爱2
收稿日期:
2021-03-26
修回日期:
2021-05-18
出版日期:
2021-09-15
发布日期:
2021-10-08
通讯作者:
金祖权,博士,教授。E-mail:jinzuquan@126.com
作者简介:
徐翔波(1987—),男,博士研究生。主要从事超高性能混凝土的研究。E-mail:xuxiangboqut@126.com
基金资助:
XU Xiangbo1, YU Yong1, JIN Zuquan1, ZHU Chongai2
Received:
2021-03-26
Revised:
2021-05-18
Online:
2021-09-15
Published:
2021-10-08
摘要: 超高性能混凝土(UHPC)是指兼具超高抗渗性能和力学性能的纤维增强水泥基复合材料。在制备UHPC过程中,高温、加压的养护制度是UHPC获得高性能的重要手段。本文综述了不同的养护制度对UHPC基本力学性能和微观结构的影响,并分析其作用机理。研究表明,热养护加速了UHPC的水化过程,提高了材料的密实度,使其具有超高强度。在引入SiO2组分下,热养护比标准养护使UHPC具有更致密的微观结构和更好的早期力学性能。但温度过高导致界面孔隙结构粗化和微裂纹产生,造成损伤,不利于UHPC的后期强度发展。本文旨在综合比较不同养护制度对UHPC力学性能和微观结构的影响,进而指导其生产和工程应用。
中图分类号:
徐翔波, 于泳, 金祖权, 朱崇爱. 养护制度对超高性能混凝土微观结构和力学性能影响的研究综述[J]. 硅酸盐通报, 2021, 40(9): 2856-2870.
XU Xiangbo, YU Yong, JIN Zuquan, ZHU Chongai. Review on Effects of Microstructure and Mechanical Properties of Ultra-High Performance Concrete by Curing Regimes[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2856-2870.
[1] DE BRITO J, KURDA R. The past and future of sustainable concrete: a critical review and new strategies on cement-based materials[J]. Journal of Cleaner Production, 2021, 281: 123558. [2] 赵金兰,闫浩春,刘 韬,等.论水泥企业碳中和的路径[J].新世纪水泥导报,2021,27(2):1-6+67. ZHAO J L, YAN H C, LIU T, et al. Initial discussion on carbon neutral pathways of cement enterprises[J]. Cement Guide for New Epoch, 2021, 27(2): 1-6+67 (in Chinese). [3] 陈宝春,季 韬,黄卿维,等.超高性能混凝土研究综述[J].建筑科学与工程学报,2014,31(3):1-24. CHEN B C, JI T, HUANG Q W, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24 (in Chinese). [4] HIREMATH P N, YARAGAL S C. Effect of different curing regimes and durations on early strength development of reactive powder concrete[J]. Construction and Building Materials, 2017, 154: 72-87. [5] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511. [6] DE LARRARD F, SEDRAN T. Optimization of ultra-high-performance concrete by the use of a packing model[J]. Cement and Concrete Research, 1994, 24(6): 997-1009. [7] 张云升,张文华,陈振宇.综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用[J].材料导报,2017,31(23):1-16. ZHANG Y S, ZHANG W H, CHEN Z Y. A complete review of ultra-high performance concrete: design and preparation, microstructure, mechanics and durability, engineering applications[J]. Materials Review, 2017, 31(23): 1-16 (in Chinese). [8] HABEL K, GAUVREAU P. Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading[J]. Cement and Concrete Composites, 2008, 30(10): 938-946. [9] MATTE V, MORANVILLE M. Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes[J]. Cement and Concrete Composites, 1999, 21(1): 1-9. [10] GRAYBEAL B A. Compressive behavior of ultra-high performance fiber-reinforced concrete[J]. ACI Materials Journal, 2007, 104(2): 146-152. [11] GRAYBEAL B, DAVIS M. Cylinder or cube: strength testing of 80 to 200 MPa (11.6 to 29 ksi) ultra-high-performance fiber-reinforced concrete[J]. ACI Materials Journal, 2008, 105(6): 603-609. [12] HABEL K, CHARRON J P, BRAIKE S, et al. Ultra-high performance fibre reinforced concrete mix design in central Canada[J]. Canadian Journal of Civil Engineering, 2008, 35(2): 217-224. [13] HABEL K, VIVIANI M, DENARIÉ E, et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2006, 36(7): 1362-1370. [14] SHI C J, WU Z M, XIAO J F, et al. A review on ultra high performance concrete: part I. Raw materials and mixture design[J]. Construction and Building Materials, 2015, 101: 741-751. [15] 牛旭婧,朋改非,尚亚杰,等.热水-干热组合养护对超高性能混凝土力学性能的影响[J].硅酸盐学报,2018,46(8):1141-1148. NIU X J, PENG G F, SHANG Y J, et al. Influence of combined curing composed of precuring in hot water and heating in dry air on mechanical properties of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1141-1148 (in Chinese). [16] PENG G F, NIU X J, SHANG Y J, et al. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties[J]. Cement and Concrete Research, 2018, 109: 147-158. [17] HELMI M, HALL M R, STEVENS L A, et al. Effects of high-pressure/temperature curing on reactive powder concrete microstructure formation[J]. Construction and Building Materials, 2016, 105: 554-562. [18] GARAS V Y, KURTIS K E, KAHN L F. Creep of UHPC in tension and compression: effect of thermal treatment[J]. Cement and Concrete Composites, 2012, 34(4): 493-502. [19] ZHANG Y S, SUN W, LIU S F, et al. Preparation of C200 green reactive powder concrete and its static-dynamic behaviors[J]. Cement and Concrete Composites, 2008, 30(9): 831-838. [20] PREM P R, RAMACHANDRA MURTHY A, BHARATKUMAR B H. Influence of curing regime and steel fibres on the mechanical properties of UHPC[J]. Magazine of Concrete Research, 2015, 67(18): 988-1002. [21] YAZICI H, DENIZ E, BARADAN B. The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete[J]. Construction and Building Materials, 2013, 42: 53-63. [22] FONTANA P, LEHMANN C, MÜLLER U. Influence of hydrothermal curing on micro structure and mechanical properties of ultra-high performance concrete[M]//Brittle Matrix Composites 9. Amsterdam: Elsevier, 2009: 391-398. [23] ZDEB T. An analysis of the steam curing and autoclaving process parameters for reactive powder concretes[J]. Construction and Building Materials, 2017, 131: 758-766. [24] MOSTOFINEJAD D, NIKOO M R, HOSSEINI S A. Determination of optimized mix design and curing conditions of reactive powder concrete (RPC)[J]. Construction and Building Materials, 2016, 123: 754-767. [25] IPEK M, YILMAZ K, SÜMER M, et al. Effect of pre-setting pressure applied to mechanical behaviours of reactive powder concrete during setting phase[J]. Construction and Building Materials, 2011, 25(1): 61-68. [26] PHILIPPOT S, MASSE S, ZANNI H, et al. 29Si NMR study of hydration and pozzolanic reactions in reactive powder concrete (RPC)[J]. Magnetic Resonance Imaging, 1996, 14(7/8): 891-893. [27] YAZICI H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures[J]. Building and Environment, 2007, 42(5): 2083-2089. [28] KOH K T, PARK J J, RYU G S, et al. Effect of the compressive strength of ultra-high strength steel fiber reinforced cementitious composites on curing method[J]. Journal of the Korean Society of Civil Engineers, 2007, 27(3A): 427-432. [29] PARK J S, KIM Y J, CHO J R, et al. Early-age strength of ultra-high performance concrete in various curing conditions[J]. Materials (Basel, Switzerland), 2015, 8(8): 5537-5553. [30] SOLIMAN A M, NEHDI M L. Effect of drying conditions on autogenous shrinkage in ultra-high performance concrete at early-age[J]. Materials and Structures, 2011, 44(5): 879-899. [31] YANG S L, MILLARD S G, SOUTSOS M N, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2009, 23(6): 2291-2298. [32] 阎培渝,崔 强.养护制度对高强混凝土强度发展规律的影响[J].硅酸盐学报,2015,43(2):133-137. YAN P Y, CUI Q. Effects of curing regimes on strength development of high-strength concrete[J]. Journal of the Chinese Ceramic Society, 2015, 43(2): 133-137 (in Chinese). [33] SOBUZ H R, VISINTIN P, MOHAMED ALI M S, et al. Manufacturing ultra-high performance concrete utilising conventional materials and production methods[J]. Construction and Building Materials, 2016, 111: 251-261. [34] WILLE K, NAAMAN A E, PARRA-MONTESINOS G J. Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way[J]. ACI Materials Journal, 2011, 108(1): 46-54. [35] 杨 简,陈宝春,苏家战.钢纤维对超高性能混凝土弹性模量的影响[J].硅酸盐学报,2020,48(5):652-658. YANG J, CHEN B C, SU J Z. Effect of steel fiber on elastic modulus of ultra-high-performance concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 652-658 (in Chinese). [36] 荆 锐,亢景付,蒋元成.温度升高20~50 ℃对混凝土弹性模量的影响探究[J].硅酸盐通报,2016,35(12):4207-4211. JING R, KANG J F, JIANG Y C. Influence of temperature rising by 20 ℃ to 50 ℃ on concrete elastic modulus[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4207-4211 (in Chinese). [37] 王秋维,史庆轩,陶 毅,等.活性粉末混凝土抗压力学性能及指标取值[J].建筑材料学报,2020,23(6):1381-1389. WANG Q W, SHI Q X, TAO Y, et al. Compressive mechanical properties and indexes of reactive powder concrete[J]. Journal of Building Materials, 2020, 23(6): 1381-1389 (in Chinese). [38] YOO D Y, LEE J H, YOON Y S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites[J]. Composite Structures, 2013, 106: 742-753. [39] HOANG A L, FEHLING E, THAI D K, et al. Evaluation of axial strength in circular STCC columns using UHPC and UHPFRC[J]. Journal of Constructional Steel Research, 2019, 153: 533-549. [40] SAHMARAN M, YAMAN I O. Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash[J]. Construction and Building Materials, 2007, 21(1): 150-156. [41] ATIŞ C D, KARAHAN O. Properties of steel fiber reinforced fly ash concrete[J]. Construction and Building Materials, 2009, 23(1): 392-399. [42] 方 志,周传波.活性粉末混凝土动静弹性模量试验研究[J].铁道学报,2018,40(9):128-134. FANG Z, ZHOU C B. Experimental study on the elastic modulus of reactive powder concrete[J]. Journal of the China Railway Society, 2018, 40(9): 128-134 (in Chinese). [43] 郝文秀,徐 晓.钢纤维活性粉末混凝土力学性能试验研究[J].建筑技术,2012,43(1):35-37. HAO W X, XU X. Experimental study on the mechanical properties of reactive powder concrete with steel fibre[J]. Architecture Technology, 2012, 43(1): 35-37 (in Chinese). [44] 吕雪源,王 英,符程俊,等.活性粉末混凝土基本力学性能指标取值[J].哈尔滨工业大学学报,2014,46(10):1-9. LV X Y, WANG Y, FU C H, et al. Basic mechanical property indexes of reactive powder concrete[J]. Journal of Harbin Institute of Technology, 2014, 46(10): 1-9 (in Chinese). [45] 余志武,丁发兴.混凝土受压力学性能统一计算方法[J].建筑结构学报,2003,24(4):41-46. YU Z W, DING F X. Unified calculation method of compressive mechanical properties of concrete[J]. Journal of Building Structures, 2003, 24(4): 41-46 (in Chinese). [46] 柯开展,周瑞忠.掺短切碳纤维活性粉末混凝土的力学性能研究[J].水力发电学报,2007,26(1):90-96. KE K Z, ZHOU R Z. Researches on mechanical properties of carbon fiber reactive powder concrete[J]. Journal of Hydroelectric Engineering, 2007, 26(1): 90-96 (in Chinese). [47] 吴炎海,何雁斌,杨幼华.活性粉末混凝土(RPC200)的力学性能[J].福州大学学报(自然科学版),2003,31(5):598-602. WU Y H, HE Y B, YANG Y H. Investigation on RPC200 mechanical performance[J]. Journal of Fuzhou University (Natural Sciences Edtion), 2003, 31(5): 598-602 (in Chinese). [48] RICHARD P, CHEYREZY M. Reactive powder concretes with high ductility and 200-800 MPa compressive strength[J]. ACI Special Publication, 1994, 144(24): 507-518. [49] GRAYBEAL B A. Material property characterization of ultra-high performance concrete[R]. FHWA-HRT-06-103, 2006: 33-36. [50] RONG Q, HOU X M, GE C. Quantifying curing and composition effects on compressive and tensile strength of 160-250 MPa RPC[J]. Construction and Building Materials, 2020, 241: 117987. [51] WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53-66. [52] KANG S T, KIM J K. The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)[J]. Cement and Concrete Research, 2011, 41(10): 1001-1014. [53] 梁咏宁,陈宝春,季 韬,等.砂胶比、水胶比和钢纤维掺量对RPC性能的影响[J].福州大学学报(自然科学版),2011,39(5):748-753. LIANG Y N, CHEN B C, JI T, et al. Effects of sand-binder ratio, water-binder ratio and volume percentage of steel fiber on the performance of RPC[J]. Journal of Fuzhou University (Natural Science Edition), 2011, 39(5): 748-753 (in Chinese). [54] 王建雷,郝相雨,籍凤秋.钢纤维对RPC混凝土力学性能影响研究[J].低温建筑技术,2008,30(3):18-20. WANG J L, HAO X Y, JI F Q. Effect of steel fiber on mechanical properties of RPC[J]. Low Temperature Architecture Technology, 2008, 30(3): 18-20 (in Chinese). [55] 季 韬,陈宝春,庄一舟,等.活性粉末混凝土抗裂性能试验研究[J].福州大学学报(自然科学版),2011,39(3):434-437+449. JI T, CHEN B C, ZHUANG Y Z, et al. Study for the cracking resistant behavior of reactive powder concrete[J]. Journal of Fuzhou University (Natural Science Edition), 2011, 39(3): 434-437+449 (in Chinese). [56] 姚志雄,周 健,周瑞忠.活性粉末混凝土断裂性能的试验研究[J].建筑材料学报,2006,9(6):654-659. YAO Z X, ZHOU J, ZHOU R Z. Experimental study on fracture properties of reactive powder concrete (RPC)[J]. Journal of Building Materials, 2006, 9(6): 654-659 (in Chinese). [57] 苏 捷,史才军,秦红杰,等.超高性能混凝土抗折强度尺寸效应[J].硅酸盐学报,2020,48(11):1740-1746. SU J, SHI C J, QIN H J, et al. Scale effect of flexural strength on ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1740-1746 (in Chinese). [58] MASSIDDA L, SANNA U, COCCO E, et al. High pressure steam curing of reactive-powder mortars[J]. Special Publication, 2001, 200: 447-464. [59] ZHANG H R, JI T, LIN X Y. Pullout behavior of steel fibers with different shapes from ultra-high performance concrete (UHPC) prepared with granite powder under different curing conditions[J]. Construction and Building Materials, 2019, 211: 688-702. [60] WU Z M, SHI C J, HE W. Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes[J]. Construction and Building Materials, 2017, 136: 307-313. [61] SHEN P L, LU L N, HE Y J, et al. The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete[J]. Cement and Concrete Research, 2019, 118: 1-13. [62] YAZICI H, YARDIMCI M Y, AYDIN S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes[J]. Construction and Building Materials, 2009, 23(3): 1223-1231. [63] XU X, ZHANG R H, LIU Y H. Influence of curing regime on properties of reactive powder concrete containing waste steel fibers[J]. Construction and Building Materials, 2020, 232: 117129. [64] POURJAHANSHAHI A, MADANI H. Chloride diffusivity and mechanical performance of UHPC with hybrid fibers under heat treatment regime[J]. Materials Today Communications, 2021, 26: 102146. [65] PAL S C, MUKHERJEE A, PATHAK S R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete[J]. Cement and Concrete Research, 2003, 33(9): 1481-1486. [66] KOVLER K, ROUSSEL N. Properties of fresh and hardened concrete[J]. Cement and Concrete Research, 2011, 41(7): 775-792. [67] CHEN T F, GAO X J, REN M. Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete[J]. Construction and Building Materials, 2018, 158: 864-872. [68] HASSAN A M T, JONES S W, MAHMUD G H. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2012, 37: 874-882. [69] 龙广成,谢友均,王培铭,等.活性粉末混凝土的性能与微细观结构[J].硅酸盐学报,2005,33(4):456-461. LONG G C, XIE Y J, WANG P M, et al. Properties and micro/mecrostructure of reactive powder concrete[J]. Journal of the Chinese Ceramic Society, 2005, 33(4): 456-461 (in Chinese). [70] 杨建森.混凝土中钙矾石作用的二重性[J].建筑材料学报,2001,4(4):362-366. YANG J S. Discussion on the duality of ettringite action in concrete[J]. Journal of Building Materials, 2001, 4(4): 362-366 (in Chinese). [71] 杨建森.混凝土中钙矾石作用的二重性及其发生条件[J].土木工程学报,2003,36(2):100-103. YANG J S. Discussion on the action duality of ettringite and it’s causing condition in concrete[J]. China Civil Engineering Journal, 2003, 36(2): 100-103 (in Chinese). [72] ALONSO C, FERNANDEZ L. Dehydration and rehydration processes of cement paste exposed to high temperature environments[J]. Journal of Materials Science, 2004, 39(9): 3015-3024. [73] ALARCON-RUIZ L, PLATRET G, MASSIEU E, et al. The use of thermal analysis in assessing the effect of temperature on a cement paste[J]. Cement and Concrete Research, 2005, 35(3): 609-613. [74] CASTELLOTE M, ALONSO C, ANDRADE C, et al. Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction[J]. Cement and Concrete Research, 2004, 34(9): 1633-1644. [75] GRATTAN-BELLEW P E. Microstructural investigation of deteriorated Portland cement concretes[J]. Construction and Building Materials, 1996, 10(1): 3-16. [76] HANDOO S K, AGARWAL S, AGARWAL S K. Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures[J]. Cement and Concrete Research, 2002, 32(7): 1009-1018. [77] 黄政宇,胡功球.热养护过程中超高性能混凝土的收缩性能研究[J].材料导报,2016,30(4):115-120. HUANG Z Y, HU G Q. Research on the shrinkage performance of ultra high performance concrete during heat curing[J]. Materials Review, 2016, 30(4): 115-120 (in Chinese). [78] KORPA A, KOWALD T, TRETTIN R. Phase development in normal and ultra high performance cementitious systems by quantitative X-ray analysis and thermoanalytical methods[J]. Cement and Concrete Research, 2009, 39(2): 69-76. [79] CWIRZEN A. The effect of the heat-treatment regime on the properties of reactive powder concrete[J]. Advances in Cement Research, 2007, 19(1): 25-33. [80] HEROLD G, MÜLLER H S. Measurment of porosity of ultra high strength fibre reinforced concrete[C]. International Symposium on Ultra High Performance Concrete. Kessel Germany, 2004: 685-694. [81] HEINZ D, LUDWIG H M. Heat treatment and the risk of DEF delayed ettringite formation in UHPC[C]. International Symposium on Ultra High Performance Concrete. Kessel Germany, 2004: 717-730. [82] 张 宇,金祖权,张云升.不同方式养护高强水泥基材料孔表面积分形维数与孔结构的关系[J].硅酸盐学报,2017,45(2):249-253. ZHANG Y, JIN Z Q, ZHANG Y S. Relationship between pore surface fractal dimension and pore structure of high strength cementitious materials cured by different methods[J]. Journal of the Chinese Ceramic Society, 2017, 45(2): 249-253 (in Chinese). [83] WANG W, LIU J, AGOSTINI F, et al. Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging[J]. Cement and Concrete Research, 2014, 55: 1-13. [84] LEUNG C K Y, LI V C. Effect of fiber inclination on crack bridging stress in brittle fiber reinforced brittle matrix composites[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6): 1333-1362. [85] BEGLARIGALE A, YAZICI H. Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar[J]. Construction and Building Materials, 2015, 75: 255-265. [86] CHAN Y W, CHU S H. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete[J]. Cement and Concrete Research, 2004, 34(7): 1167-1172. [87] YU R, SPIESZ P, BROUWERS H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2014, 56: 29-39. [88] 毛 军,张后禅.养护制度对活性粉末混凝土力学性能影响[J].低温建筑技术,2011,33(7):9-10. MAO J, ZHANG H S. Effect of curing system on mechanical properties of reactive powder concrete[J]. Low Temperature Architecture Technology, 2011, 33(7): 9-10 (in Chinese). [89] 张 胜,周锡玲,谢友均,等.养护制度对活性粉末混凝土强度及微观结构影响的研究[J].混凝土,2007(6):16-18. ZHANG S, ZHOU X L, XIE Y J, et al. Study on the effect of curing system on the strength and microstructure of reactive powder concrete[J]. Concrete, 2007(6): 16-18 (in Chinese). [90] 赖建中,孙 伟.生态型RPC材料的力学性能及微观机理研究[J].新型建筑材料,2009,36(12):20-23. LAI J Z, SUN W. Study on mechanical properties and micro-mechanism of ecological reactive powder concrete[J]. New Building Materials, 2009, 36(12): 20-23 (in Chinese). [91] MASSE S, ZANNI H, LECOURTIER J, et al. 29Si solid state NMR study of tricalcium silicate and cement hydration at high temperature[J]. Cement and Concrete Research, 1993, 23(5): 1169-1177. [92] HEINZ D, LUDWIG H M. Heat treatment and the risk of DEF delayed ettringite formation in UHPC[C]. Proceedings of the Proceedings of the International Symposium on UHPC, 2004, 717-730. [93] YAZICI H, YIĞITER H, KARABULUT A Ş, et al. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete[J]. Fuel, 2008, 87(12): 2401-2407. [94] ODLER I. Hydration, setting and hardening of Portland cement[M]//Lea’s Chemistry of Cement and Concrete. Amsterdam: Elsevier, 1998: 241-297. [95] GLASSER F P, HONG S Y. Thermal treatment of C-S-H gel at 1 bar H2O pressure up to 200 ℃[J]. Cement and Concrete Research, 2003, 33(2): 271-279. [96] YANG Q B, ZHANG S Q, HUANG S Y, et al. Effect of ground quartz sand on properties of high-strength concrete in the steam-autoclaved curing[J]. Cement and Concrete Research, 2000, 30(12): 1993-1998. [97] CHEYREZY M, MARET V, FROUIN L. Microstructural analysis of RPC (reactive powder concrete)[J]. Cement and Concrete Research, 1995, 25(7): 1491-1500. [98] TAYLOR H F W. Cement chemistry[M]. London: Thomas Telford Publishing, 1997. [99] 罗玉萍,王立久.燃煤发电联产水泥技术研究进展[J].洁净煤技术,2006,12(4):35-38. LUO Y P, WANG L J. Review of study on the development of the technology of joint production of coal-burning electricity generation and cement manufacture[J]. Clean Coal Technology, 2006, 12(4): 35-38 (in Chinese). [100]李淑英.5 000 t/d熟料水泥企业能耗现状与节能潜力分析[J].节能,2020,39(3):78-80. LI S Y. Analysis on energy consumption status and energy conservation potential of 5 000 t/d clinker cement enterprise[J]. Energy Conservation, 2020, 39(3): 78-80 (in Chinese). [101]ZHANG P, GAO Z, WANG J, et al. Properties of fresh and hardened fly ash/slag based geopolymer concrete: a review[J]. Journal of Cleaner Production, 2020, 270: 122389. |
[1] | 郑娟, 李辉, 徐名凤, 周健, 陈智丰, 张振秋, 刘成健, 张建波. 海水对高贝利特硫铝酸盐水泥水化过程和力学性能的影响[J]. 硅酸盐通报, 2021, 40(9): 2898-2904. |
[2] | 于子豪, 张彤炜, 崔科旺. 偏高岭土对高流动性钢纤维混凝土早期力学性能和细观结构的影响[J]. 硅酸盐通报, 2021, 40(9): 2911-2920. |
[3] | 韩建军, 廖党, 席壮民, 唐海超, 代崇阳, 吕亚军, 苗壮. 磁铁矿防辐射超高性能混凝土制备及性能研究[J]. 硅酸盐通报, 2021, 40(9): 2930-2938. |
[4] | 邵化建, 李宗利, 肖帅鹏, 姚希望, 张宁. 干湿循环作用下混凝土力学性能及微观结构研究[J]. 硅酸盐通报, 2021, 40(9): 2948-2955. |
[5] | 邹敏, 沈玉, 刘娟红. 钢渣粉在水泥基材料中应用研究综述[J]. 硅酸盐通报, 2021, 40(9): 2964-2977. |
[6] | 杨达, 庞来学, 宋迪, 卢明阳, 王佳斌, 管泽斌. 粉煤灰对碱激发矿渣/粉煤灰体系的作用机理研究[J]. 硅酸盐通报, 2021, 40(9): 3005-3011. |
[7] | 冯元, 余睿, 范定强, 曾敏, 胡方杰, 水中和, 王思雨, 刘康宁, 谭珺辉, 王武峰. 基于多重响应的钢渣超高性能混凝土组成优化设计研究[J]. 硅酸盐通报, 2021, 40(9): 3029-3038. |
[8] | 杨谨鸿, 李秀地, 王起帆, 罗银剑. 工程水泥基复合材料动态力学性能及抗爆抗冲击能力研究进展[J]. 硅酸盐通报, 2021, 40(8): 2485-2496. |
[9] | 齐秋霖, 周健, 葛仲熙, 李辉, 徐名凤, 陈智丰, 张振秋, 崔素萍. 硫铝酸盐水泥抗酸侵蚀性能与机理研究[J]. 硅酸盐通报, 2021, 40(8): 2508-2514. |
[10] | 王悦, 王琴, 郑海宇, 詹达富. 分散剂对石墨烯水泥基复合材料压敏性能的影响研究[J]. 硅酸盐通报, 2021, 40(8): 2515-2526. |
[11] | 倪修成, 程小伟, 黎俊吾, 王晶, 高显束, 张高寅, 张春梅, 刘开强. 新型油井水泥物相组成调控及力学性能研究[J]. 硅酸盐通报, 2021, 40(8): 2534-2545. |
[12] | 练松松, 孟涛, 赵羽习, 卢予奇. 阻锈剂对海水拌和再生胶砂力学性能和钢筋腐蚀行为的影响研究[J]. 硅酸盐通报, 2021, 40(8): 2546-2553. |
[13] | 郑昊, 梁咏宁, 詹建伟, 季韬. MgO和CaO对碱矿渣混凝土抗碳化性能的影响[J]. 硅酸盐通报, 2021, 40(8): 2564-2573. |
[14] | 樊祺, 杜红秀, 赵壮. 辅助胶凝材料对预应力高强混凝土管桩强度及工艺的影响[J]. 硅酸盐通报, 2021, 40(8): 2591-2599. |
[15] | 郑云, 乔志炜, 刘延友, 牛波, 段文九, 周国相, 杨治华. 针刺参数对玄武岩纤维预制体力学和热导率影响的有限元分析[J]. 硅酸盐通报, 2021, 40(8): 2763-2769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||