[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. [2] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. [3] AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522. [4] LI J L, DANIEL C, WOOD D. Materials processing for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(5): 2452-2460. [5] LIU Z, GUO R T, MENG J S, et al. Facile electrospinning formation of carbon-confined metal oxide cube-in-tube nanostructures for stable lithium storage[J]. Chemical Communications, 2017, 53: 8284-8287. [6] CAPSONI D, BINI M, MASSAROTTI V, et al. Cations distribution and valence states in Mn-substituted Li4Ti5O12 structure[J]. Chemistry of Materials, 2008, 20 (13): 4291-4298. [7] NCUBE N M, MHLONGO W T, MCCRINDLE R I, et al. The electrochemical effect of Al-doping on Li4Ti5O12 as anode material for lithium-ion batteries[J]. Materials Today: Proceedings, 2018, 5(4): 10592-10601. [8] PINUS I, CATTI M, RUFFO R, et al. Neutron diffraction and electrochemical study of FeNb11O29/Li11FeNb11O29for lithium battery anode applications[J]. Chemistry of Materials, 2014, 26(6): 2203-2209. [9] ZHENG R T, QIAN S S, CHENG X, et al. FeNb11O29 nanotubes: superior electrochemical energy storage performance and operating mechanism[J]. Nano Energy, 2019, 58: 399-409. [10] LOU X M, LIN C F, LUO Q, et al. Crystal structure modification enhanced FeNb11O29 anodes for lithium-ion batteries[J]. ChemElectroChem, 2017, 4(12): 3171-3180. [11] LOU X M, XU Z H, LUO Z B, et al. Exploration of Cr0.2Fe0.8Nb11O29 as an advanced anode material for lithium-ion batteries of electric vehicles[J]. Electrochimica Acta, 2017, 245: 482-488. [12] 肖 和,张文展,邱小林,等.Mg2+和F-共掺杂提高LiNi0.8Co0.15Al0.05O2电化学性能[J].硅酸盐通报,2020,39(3):890-895. XIAO H, ZHANG W Z, QIU X L, et al. Electrochemical performance of LiNi0.8Co0.15Al0.05O2 enhanced by Mg2+ and F- co-doping[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 890-895 (in Chinese). [13] 刘文刚,许云华,杨 蓉,等.锂离子电池正极材料Li2Mn0.95Mg0.05SiO4的合成和电化学性能[J].硅酸盐通报,2009,28(3):464-467. LIU W G, XU Y H, YANG R, et al. Preparation and electrochemical performance of Li2Mn0.95Mg0.05SiO4 cathode material for lithium ion batteries[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(3): 464-467 (in Chinese). [14] HAN J T, GOODENOUGH J B. 3-V full cell performance of anode framework TiNb2O7/spinel LiNi0.5Mn1.5O4[J]. Chemistry of Materials, 2011, 23(15): 3404-3407. [15] 孙 宁,刘小伟,刘湘林,等.铋离子掺杂固体氧化物燃料电池阴极材料的研究进展[J].硅酸盐通报,2020,39(12):3958-3963. SUN N, LIU X W, LIU X L, et al. Research progress of bismuth ion doped cathode materials for solid oxide fuel cell[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3958-3963 (in Chinese). [16] LIN X H, ZHAO Y M, KUANG Q, et al. Synthesis and electrochemical properties of Co-doped Li9V3(P2O7)3(PO4)2/C as cathode materials for lithium-ion batteries[J]. Solid State Ionics, 2014, 259: 46-52. [17] 闫小童,侯育花,郑寿红,等.Ga,Ge,As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究[J].物理学报,2019,68(18):187101. YAN X T, HOU Y H, ZHENG S H, et al. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries[J]. Acta Physica Sinica, 2019, 68(18): 187101 (in Chinese). [18] SONG H, KIM Y T. A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution[J]. Chemical Communications, 2015, 51(48): 9849-9852. [19] ITURRONDOBEITIA A, GOÑI A, PALOMARES V, et al. Effect of doping LiMn2O4 spinel with a tetravalent species such as Si(IV) versus with a trivalent species such as Ga(III). Electrochemical, magnetic and ESR study[J]. Journal of Power Sources, 2012, 216: 482-488. [20] LALA S M, MONTORO L A, LEMOS V, et al. The negative and positive structural effects of Ga doping in the electrochemical performance of LiCoO2[J]. Electrochimica Acta, 2005, 51(1): 7-13. [21] TONG D G, CAO J L, LAI Q Y, et al. Synthesis and characterization of LiCo0.3-xGaxNi0.7O2 (x=0, 0.05) as a cathode material for lithium ion battery[J]. Materials Chemistry and Physics, 2006, 100(2/3): 217-223. [22] SHIN D W, BRIDGES C A, HUQ A, et al. Role of cation ordering and surface segregation in high-voltage spinel LiMn1.5Ni0.5-xMxO4 (M=Cr, Fe, and Ga) cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2012, 24(19): 3720-3731. [23] LIANG G S, JIN X X, HUANG C H, et al. Cr3+-doped Li3VO4 for enhanced Li+ storage[J]. Functional Materials Letters, 2020, 13(2): 2050005. [24] LIN C F, LAI M O, LU L, et al. Structure and high rate performance of Ni2+ doped Li4Ti5O12 for lithium ion battery[J]. Journal of Power Sources, 2013, 244: 272-279. [25] LIN C F, YU S, WU S Q, et al. Ru0.01Ti0.99Nb2O7 as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8627-8635. [26] LIN C F, FAN X Y, XIN Y L, et al. Li4Ti5O12-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: a synergistic effect of doping, incorporating a conductive phase and reducing the particle size[J]. J Mater Chem A, 2014, 2(26): 9982-9993. [27] ZHU X Z, XU J, LUO Y P, et al. MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms[J]. Journal of Materials Chemistry A, 2019, 7(11): 6522-6532. [28] LOU X M, FU Q F, XU J, et al. GaNb11O29 nanowebs as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Nano Materials, 2018, 1(1): 183-190. [29] LOU X, LI R, ZHU X, et al. New anode material for lithium-ion batteries: aluminum niobate (AlNb11O29)[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6089-6096. [30] FU Q F, LIU X, HOU J R, et al. Highly conductive CrNb11O29 nanorods for use in high-energy, safe, fast-charging and stable lithium-ion batteries[J]. Journal of Power Sources, 2018, 397: 231-239. [31] ZHU X Z, FU Q F, TANG L F, et al. Mg2Nb34O87 porous microspheres for use in high-energy, safe, fast-charging, and stable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23711-23720. |