[1] 于清波,王青海,赵青杨,等.SiO2/g-C3N4复合材料的制备及性能研究[J].化工新型材料,2016,44(5):106-108. YU Q B, WANG Q H, ZHAO Q Y, et al. Synthesis and property of SiO2/g-C3N4 composite[J]. New Chemical Materials, 2016, 44(5): 106-108 (in Chinese). [2] PRAKASH K, KUMAR P S, LATHA P, et al. Design and fabrication of a novel metal-free SiO2/g-C3N4 nanocomposite: a robust photocatalyst for the degradation of organic contaminants[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(1): 268-278. [3] 侯建华,蔡 瑞,沈 明,等.多孔纳米片状石墨相氮化碳的制备及其可见光催化[J].无机化学学报,2018,34(3):467-474. HOU J H, CAI R, SHEN M, et al. Preparation and visible light photocatalysis of porous nanosheet graphitic carbon nitride[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(3): 467-474 (in Chinese). [4] 王晓雪,高建平,赵瑞茹,等.g-C3N4纳米管的制备及其光催化降解性能[J].无机化学学报,2018,34(6):1059-1064. WANG X X, GAO J P, ZHAO R R, et al. Preparation and photocatalytic performance of g-C3N4 nanotubes[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(6): 1059-1064 (in Chinese). [5] CHANG M J, CUI W N, LIU J, et al. Fabrication and photocatalytic properties of flexible g-C3N4/SiO2 composite membrane by electrospinning method[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(8): 6771-6778. [6] 余竞雄,崔 敏,陈倩倩,等.以SiO2为模板制备高比表面积g-C3N4光催化剂[J].浙江师范大学学报(自然科学版),2017,40(1):36-42. YU J X, CUI M, CHEN Q Q, et al. Preparation of high surface area g-C3N4 photocatalyst with SiO2 as a template[J]. Journal of Zhejiang Normal University (Natural Sciences), 2017, 40(1): 36-42 (in Chinese). [7] AZAMI M S, JALIL A A, HITAM C N C, et al. Tuning of the electronic band structure of fibrous silica titania with g-C3N4 for efficient Z-scheme photocatalytic activity[J]. Applied Surface Science, 2020, 512: 145744. [8] KANG S, JANG J, PAWAR R C, et al. Direct coating of a g-C3N4 layer onto one-dimensional TiO2 nanocluster/nanorod films for photoactive applications[J]. Dalton Transactions, 2018, 47(21): 7237-7244. [9] LU L Y, WANG G H, ZOU M, et al. Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme heterojunction photocatalyst[J]. Applied Surface Science, 2018, 441: 1012-1023. [10] MEI J, ZHANG D P, LI N, et al. The synthesis of Ag3PO4/g-C3N4 nanocomposites and the application in the photocatalytic degradation of bisphenol A under visible light irradiation[J]. Journal of Alloys and Compounds, 2018, 749: 715-723. [11] ZHANG R, WANG Y, ZHANG Z Y, et al. Highly sensitive acetone gas sensor based on g-C3N4 decorated MgFe2O4 porous microspheres composites[J]. Sensors, 2018, 18(7): 2211. [12] PHAM T T, SHIN E W. Thermal formation effect of g-C3N4 structure on the visible light driven photocatalysis of g-C3N4/NiTiO3 Z-scheme composite photocatalysts[J]. Applied Surface Science, 2018, 447: 757-766. [13] AKBARZADEH R, FUNG C S L, RATHER R A, et al. One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of ibuprofen[J]. Chemical Engineering Journal, 2018, 341: 248-261. [14] XIAO M, LUO B, WANG S C, et al. Solar energy conversion on g-C3N4 photocatalyst: light harvesting, charge separation, and surface kinetics[J]. Journal of Energy Chemistry, 2018, 27(4): 1111-1123. [15] LIU G, QIAO X, GONDAL M A, et al. Comparative study of pure g-C3N4 and sulfur-doped g-C3N4 catalyst performance in photo-degradation of persistent pollutant under visible light[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(6): 4142-4154. [16] JIN L, ZHOU X S, NING X M, et al. Boosting visible light photocatalytic performance of g-C3N4 nanosheets by combining with LaFeO3 nanoparticles[J]. Materials Research Bulletin, 2018, 102: 353-361. |