[1] FU J J, ZHANG Q, HUANG B C, et al. A review on anammox process for the treatment of antibiotic-containing wastewater: linking effects with corresponding mechanisms[J]. Frontiers of Environmental Science & Engineering, 2020, 15(1): 1-15. [2] 胡凯强,赖声发,钱艳峰,等.破乳法合成N掺杂TiO2/粉煤灰及其可见光催化性能研究[J].硅酸盐通报,2021,40(1):304-311. HU K Q, LAI S F, QIAN Y F, et al. Synthesis of N-doped TiO2/fly ash composites by demulsification method and its visible light catalytic performance[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 304-311 (in Chinese). [3] WU D Y, LONG M C. Realizing visible-light-induced self-cleaning property of cotton through coating N-TiO2 film and loading AgI particles[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4770-4774. [4] GUO R N, WANG Y Y, LI J J, et al. Sulfamethoxazole degradation by visible light assisted peroxymonosulfate process based on nanohybrid manganese dioxide incorporating ferric oxide[J]. Applied Catalysis B: Environmental, 2020, 278: 119297. [5] 翟文琰,李 孟,张 倩.过硫酸盐协同光催化纳米ZnO降解盐酸四环素的影响机制[J].中国环境科学,2020,40(6):2483-2492. ZHAI W Y, LI M, ZHANG Q. Influence mechanism and synergistic effects of photocatalytic degradation of tetracycline hydrochloride by the combination of persulfate and nano-ZnO[J]. China Environmental Science, 2020, 40(6): 2483-2492 (in Chinese). [6] YAO Y J, HU H H, YIN H Y, et al. Phase change on stainless-steel mesh for promoting sulfate radical formation via peroxymonosulfate oxidation[J]. Applied Catalysis B: Environmental, 2020, 278: 119333. [7] LI W Q, LI S Q, TANG Y, et al. Highly efficient activation of peroxymonosulfate by cobalt sulfide hollow nanospheres for fast ciprofloxacin degradation[J]. Journal of Hazardous Materials, 2020, 389: 121856. [8] LI H X, YAO Y Z, ZHANG J, et al. Degradation of phenanthrene by peroxymonosulfate activated with bimetallic metal-organic frameworks: kinetics, mechanisms, and degradation products[J]. Chemical Engineering Journal, 2020, 397: 125401. [9] 程爱华,马万超,徐 哲.等离子体改性海绵铁活化过硫酸盐处理含酚废水[J].化工进展,2020,39(2):798-804. CHENG A H, MA W C, XU Z. Treatment of phenol wastewater with persulfate activated by plasmamodified sponge iron[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 798-804 (in Chinese). [10] GOU Z Q, DAI J H. BAI J W. Synthesis of mesoporous Bi2WO6 flower-like spheres with photocatalysis properties under visible light[J]. International Journal of Electrochemical Science, 2020: 10684-10693. [11] LUO D, KANG Y. Facile two-step hydrothermal synthesis of a novel visible-light photocatalyst made from Bi2O3 modified by 4-bromothiophenol[J]. Materials Letters, 2018, 233: 98-101. [12] XIONG X Y, ZHOU T F, LIU X F, et al. Surfactant-mediated synthesis of single-crystalline Bi3O4Br nanorings with enhanced photocatalytic activity[J]. Journal of Materials Chemistry A, 2017, 5(30): 15706-15713. [13] JIA Y L, LIN Y H, MA Y, et al. Fabrication of hollow Bi2MoO6 nanorods with efficient photocatalytic performance[J]. Materials Letters, 2019, 234: 83-86. [14] ZHANG L W, XU T G, ZHAO X, et al. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J]. Applied Catalysis B: Environmental, 2010, 98(3/4): 138-146. [15] ZUO G C, WANG Y T, TEO W L, et al. Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@2D-MXene Schottky junction nanohybrid[J]. Chemical Engineering Journal, 2021, 403: 126328. [16] ZHANG L, SHEN Q H, YU L X, et al. Fabrication of a high-adsorption N-TiO2/Bi2MoO6 composite photocatalyst with a hierarchical heterostructure for boosted weak-visible-light photocatalytic degradation of tetracycline[J]. CrystEngComm, 2020, 22(33): 5481-5490. [17] HE Q, NI Y H, YE S Y. Preparation of flowerlike BiOBr/Bi2MoO6 composite superstructures and the adsorption behavior to dyes[J]. Journal of Physics and Chemistry of Solids, 2017, 104: 286-292. [18] ZHANG R, WANG Q, ZHANG J, et al. Morphology modulation of SnO photocatalyst: from microplate to hierarchical architectures self-assembled with thickness controllable nanosheets[J]. CrystEngComm, 2018, 20(32): 4651-4665. [19] ZHANG G P, CHEN D Y, LI N J, et al. Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2019, 250: 313-324. [20] SHEN Z Y, ZHOU H Y, PAN Z C, et al. Degradation of atrazine by Bi2MoO6 activated peroxymonosulfate under visible light irradiation[J]. Journal of Hazardous Materials, 2020, 400: 123187. [21] 王玉梅,冀海伟,常 通,等.Au/TiO2复合物的制备、表征及其增强光催化灭菌活性[J].化工进展,2020,39(5):1857-1865. WANG Y M, JI H W, CHANG T, et al. Preparation, characterization and enhanced photocatalytic sterilization activity of Au/TiO2 composite[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1857-1865 (in Chinese). [22] ZHANG J L, ZHAO W, LI Z, et al. Visible-light-assisted peroxymonosulfate activation over Fe(II)/V(IV) self-doped FeVO4 nanobelts with enhanced sulfamethoxazole degradation: performance and mechanism[J]. Chemical Engineering Journal, 2021, 403: 126384. [23] MIAO Y C, PAN G F, HUO Y N, et al. Aerosol-spraying preparation of Bi2MoO6: a visible photocatalyst in hollow microspheres with a porous outer shell and enhanced activity[J]. Dyes and Pigments, 2013, 99(2): 382-389. [24] WANG B J, ZHANG Y, QIN Y Y, et al. Removal of Microcystis aeruginosa and control of algal organic matter by Fe(II)/peroxymonosulfate pre-oxidation enhanced coagulation[J]. Chemical Engineering Journal, 2021, 403: 126381. [25] LI H C, QIAN J S, PAN B C. N-coordinated Co containing porous carbon as catalyst with improved dispersity and stability to activate peroxymonosulfate for degradation of organic pollutants[J]. Chemical Engineering Journal, 2021, 403: 126395. [26] MAHMOODI N M, ARAMI M, LIMAEE N Y, et al. Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania[J]. Journal of Hazardous Materials, 2007, 145(1/2): 65-71. [27] LI Y, LI L, CHEN Z X, et al. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: process, kinetics, and mechanisms[J]. Chemosphere, 2018, 192: 372-378. [28] 王佳琦,钱庆荣,陈庆华,等.·CO-3在基于太阳光驱动的TiO2-贝壳粉降解盐酸四环素中的作用:降解机理和转化路径(英文)[J].催化学报,2020,41(10):1511-1521. WANG J Q, QIAN Q R, CHEN Q H, et al. Significant role of carbonate radicals in tetracycline hydrochloride degradation based on solar light-driven TiO2-seashell composites: removal and transformation pathways[J]. Chinese Journal of Catalysis, 2020, 41(10): 1511-1521. |