硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (6): 2042-2051.
任志盛, 刘数华
收稿日期:
2021-01-18
修回日期:
2021-03-19
出版日期:
2021-06-15
发布日期:
2021-07-08
通讯作者:
刘数华,博士,教授。E-mail:shliu@whu.edu.cn
作者简介:
任志盛(1993—),男,博士研究生。主要从事土壤重金属修复方面的研究。E-mail:renzhisheng@whu.edu.cn
基金资助:
REN Zhisheng, LIU Shuhua
Received:
2021-01-18
Revised:
2021-03-19
Online:
2021-06-15
Published:
2021-07-08
摘要: 世界范围内的土壤中广泛存在重金属污染,正确认识土壤中重金属的存在形式有利于采取适当的方式进行土壤修复。现有技术中,根据修复原理可分为物理、化学、生物、电气和热修复五种,具体方法为覆盖、封装、填埋、土壤冲洗、电动萃取、稳定化/固化、玻璃化、植物修复及微生物修复。这些技术具有相应的优缺点和适用性,覆盖、封装和填埋适用于污染严重面积小的区域;土壤冲洗工程量大,需要对螯合剂进行处理;电动萃取适用于浅层、低浓度污染场地,处理时间长;稳定化/固化应用广泛但不能从土壤中根除重金属;植物修复需提高效率。合适的修复技术对于重金属污染土壤再利用至关重要,需结合污染的类型和程度、修复目标、场地特征、成本效益、修复时间。
中图分类号:
任志盛, 刘数华. 重金属污染土壤修复研究进展[J]. 硅酸盐通报, 2021, 40(6): 2042-2051.
REN Zhisheng, LIU Shuhua. Research Progress on Remediation of Heavy Metal Contaminated Soil[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 2042-2051.
[1] NRIAGU J O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere[J]. Nature, 1979, 279(5712): 409-411. [2] BOHN H L, MCNEAL B L, O'CONNOR G A. Soil chemistry[M]. New York: Wiley, 1979. [3] TANDY S, BOSSART K, MUELLER R, et al. Extraction of heavy metals from soils using biodegradable chelating agents[J]. Environmental Science & Technology, 2004, 38(3): 937-944. [4] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219. [5] MCLAUGHLIN M J, TILLER K G, NAIDU R, et al. Review: the behaviour and environmental impact of contaminants in fertilizers[J]. Soil Research, 1996, 34(1): 1. [6] KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2017, 182: 247-268. [7] WUANA R A, OKIEIMEN F E. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation[J]. ISRN Ecology, 2011, 2011: 1-20. [8] HE Z, SHENTU U, YANG X, et al. Heavy metal contamination of soils: sources, indicators, and assessment[J]. Journal of Environmental Indicators, 2015, 9: 17-18. [9] MARIA A. Assessment of soil pollution with heavy metals in Romania[M]//Environmental Risk Assessment of Soil Contamination. Philippines: InTech, 2014. [10] DESAULES A, AMMANN S, SCHWAB P. Advances in long-term soil-pollution monitoring of Switzerland[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(4): 525-535. [11] LEE C G, CHON H T, JUNG M C. Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea[J]. Applied Geochemistry, 2001, 16(11/12): 1377-1386. [12] FRANGI J P, RICHARD D. Heavy metal soil pollution cartography in northern France[J]. Science of the Total Environment, 1997, 205(1): 71-79. [13] IKEDA A, YODA K. Soil pollution by heavy metals in Sakai city[J]. Japanese Journal of Ecology, 1982, 32(2): 241-249. [14] CHU H J, LIN Y P, CHANG T K. Spatial autocorrelation analysis of soil pollution data in central Taiwan[C]//2011 International Conference on Computational Science and Its Applications. June 20-23, 2011, Santander, Spain. IEEE, 2011: 219-222. [15] 中华人民共和国环境保护部,中华人民共和国国土资源部.全国土壤污染状况调查公报[J].中国环保产业,2014(5):10-11. Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources, PRC. National survey of soil pollution[J]. China Environmental Protection Industry, 2014(5): 10-11 (in Chinese). [16] ROBERTS D, NACHTEGAAL M, SPARKS D L. Speciation of metals in soils[M]//SSSA Book Series. Madison, WI, USA: Soil Science Society of America, 2018: 619-654. [17] DIJKSTRA E F. A micromorphological study on the development of humus profiles in heavy metal polluted and non-polluted forest soils under Scots pine[J]. Geoderma, 1998, 82(4): 341-358. [18] MCBRIDE M, SAUVE S, HENDERSHOT W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils[J]. European Journal of Soil Science, 1997, 48(2): 337-346. [19] VALINE S B, CHILCOTE D D, ZAMBRANO A R, et al. Development of a soil washing system[C]// CAB Direct, 1990. [20] Environmental Protection Agency, Washington, DC. Considerations in ground-water remediation at superfund sites and RCRA facilities: update[J]. National Digital Library of Engineering Technology, 1992. [21] CLAY D. Considerations in ground-water remediation at superfund sites and RCRA facilities: update[J]. USEPA memorandum, 1992. [22] OSMAN K T. Soil pollution[M]//Soil Degradation, Conservation and Remediation. Dordrecht: Springer Netherlands, 2013: 149-226. [23] KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2): 95-122. [24] HELMUT M. Soil remediation and rehabilitation: treatment of contaminated and disturbed land[M]. Dordrecht: Springer, 2012. [25] CZURDA K A. The triple multimineral barrier for hazardous waste encapsulation[J]. Engineering Geology, 1993, 34(3/4): 205-209. [26] 刘 睿,杜延军,梅丹兵,等.土-膨润土系竖向隔离工程屏障阻滞重金属污染物运移特性试验研究[J].防灾减灾工程学报,2018,38(5):815-821. LIU R, DU Y J, MEI D B, et al. Laboratory study of soil-bentonite vertical barrier on heavy metal migration retardation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 815-821 (in Chinese). [27] 薛 强,詹良通,胡黎明,等.环境岩土工程研究进展[J].土木工程学报,2020,53(3):80-94. XUE Q, ZHAN L T, HU L M, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2020, 53(3): 80-94 (in Chinese). [28] GRIFFITHS R A. Soil-washing technology and practice[J]. Journal of Hazardous Materials, 1995, 40(2): 175-189. [29] DERMONT G, BERGERON M, MERCIER G, et al. Soil washing for metal removal: a review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1): 1-31. [30] MERCIER G, DUCHESNE J, BLACKBURN D. Prediction of the efficiency of physical methods to remove metals from contaminated soils[J]. J. Environ. Eng, 2001, 127(4):348-358. [31] WILLIFORD C, MARK BRICKA R. Physical separation of metal-contaminated soils[M]//Environmental Restoration of Metals-Contaminated Soils. Boca Raton: CRC Press, 2000: 121-165. [32] SMITH L. Contaminants and remedial options at selected metal-contaminated sites. Technical resource report[R]. Battelle, Columbus, OH (United States), 1995. [33] AGENCY E P. Contaminants and remedial options at selected metal-contaminated sites[J]. EPA, 1995. [34] GUPTA C K, MUKHERJEE T K. Hydrometallurgy: an introductory appraisal[M]//Hydrometallurgy in Extraction Processes. Routledge, 2019: 1-56. [35] DUXSON P, FERNÁNDEZ-JIMÉNEZ A, PROVIS J L, et al. Geopolymer technology: the current state of the art[J]. Journal of Materials Science, 2007, 42(9): 2917-2933. [36] TAJUDIN S A, AZMI M M, NABILA A A. Stabilization/solidification remediation method for contaminated soil: a review[J]. IOP Conference Series: Materials Science and Engineering, 2016, 136: 012043. [37] 金漫彤,沈学优.土壤聚合物的制备及其固化重金属离子的研究[J].化工环保,2005,25(2):84-87. JIN M T, SHEN X Y. Preparation of geopolymer and its application in the fixation of heavy metal ions[J]. Environmental Protection of Chemical Industry, 2005, 25(2): 84-87 (in Chinese). [38] DERMATAS D, MENG X G. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology, 2003, 70(3/4): 377-394. [39] YIN C Y, MAHMUD H B, SHAABAN M G. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash[J]. Journal of Hazardous Materials, 2006, 137(3): 1758-1764. [40] MOON D H, WAZNE M, YOON I H, et al. Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils[J]. Journal of Hazardous Materials, 2008, 159(2/3): 512-518. [41] 殷 飞,王海娟,李燕燕,等.不同钝化剂对重金属复合污染土壤的修复效应研究[J].农业环境科学学报,2015,34(3):438-448. YIN F, WANG H J, LI Y Y, et al. Remediation of multiple heavy metal polluted soil using different immobilizing agents[J]. Journal of Agro-Environment Science, 2015, 34(3): 438-448 (in Chinese). [42] USMAN A, KUZYAKOV Y, STAHR K. Effect of clay minerals on immobilization of heavy metals and microbial activity in a sewage sludge-contaminated soil (8 pp)[J]. Journal of Soils and Sediments, 2005, 5(4): 245-252. [43] 刘永红,冯 磊,胡红青,等.磷矿粉和活化磷矿粉修复Cu污染土壤[J].农业工程学报,2013,29(11):180-186. LIU Y H, FENG L, HU H Q, et al. Evaluation of phosphate rock and activated phosphate rock for remediation of copper-contaminated soils[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(11): 180-186 (in Chinese). [44] LU K P, YANG X, GIELEN G, et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil[J]. Journal of Environmental Management, 2017, 186: 285-292. [45] REDDY K R, URBANEK A, KHODADOUST A P. Electroosmotic dewatering of dredged sediments: bench-scale investigation[J]. Journal of Environmental Management, 2006, 78(2): 200-208. [46] HUNTER R J. Zeta potential in colloid science: principles and applications[M]. America: Academic Press, 2013. [47] YEUNG A T, GU Y Y. A review on techniques to enhance electrochemical remediation of contaminated soils[J]. Journal of Hazardous Materials, 2011, 195: 11-29. [48] LOZANO J C, BLANCO RODRÍGUEZ P, VERA TOMÉ F, et al. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments[J]. Journal of Hazardous Materials, 2011, 198: 224-231. [49] CAO M H, HU Y, SUN Q, et al. Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution[J]. Environmental Pollution, 2013, 174: 93-99. [50] SONG Y, AMMAMI M T, BENAMAR A, et al. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment[J]. Environmental Science and Pollution Research, 2016, 23(11): 10577-10586. [51] SIVAPULLAIAH P V, NAGENDRA PRAKASH B S, SUMA B N. Electrokinetic removal of heavy metals from soil[J]. Journal of Electrochemical Science and Engineering, 2015, 5(1): 47-65. [52] VIRKUTYTE J, SILLANPÄÄ M, LATOSTENMAA P. Electrokinetic soil remediation: critical overview[J]. Science of the Total Environment, 2002, 289(1/2/3): 97-121. [53] BARAUD F, TELLIER S, ASTRUC M. Ion velocity in soil solution during electrokinetic remediation[J]. Journal of Hazardous Materials, 1997, 56(3): 315-332. [54] 严建华,马增益,彭 雯,等.沥青固化城市生活垃圾焚烧飞灰的实验研究[J].环境科学学报,2004,24(4):730-733. YAN J H, MA Z Y, PENG W, et al. Experimental study on solidification of MSW incinerator fly ash by mixing with asphalt[J]. Acta Scientiae Circumstantiae, 2004, 24(4): 730-733 (in Chinese). [55] AL-HWAITI M, IBRAHIM K A, HARRARA M. Removal of heavy metals from waste phosphogypsum materials using polyethylene glycol and polyvinyl alcohol polymers[J]. Arabian Journal of Chemistry, 2019, 12(8): 3141-3150. [56] VOSKUIL T. Handbook: vitrification technologies for treatment of hazardous and radioactive waste[J]. Washington, DC: United States Environmental Protection Agency, Office of Research and Development, 1992. [57] TANG Y, LEE P H, SHIH K. Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization[J]. Environmental Science & Technology, 2013, 47(15): 8609-8615. [58] DELLISANTI F, ROSSI P L, VALDRÈ G. In-field remediation of tons of heavy metal-rich waste by Joule heating vitrification[J]. International Journal of Mineral Processing, 2009, 93(3/4): 239-245. [59] NAVARRO A, CARDELLACH E, CAÑADAS I, et al. Solar thermal vitrification of mining contaminated soils[J]. International Journal of Mineral Processing, 2013, 119: 65-74. [60] COLOMBO P, BRUSATIN G, BERNARDO E, et al. Inertization and reuse of waste materials by vitrification and fabrication of glass-based products[J]. Current Opinion in Solid State and Materials Science, 2003, 7(3): 225-239. [61] GAO J, DONG C Q, ZHAO Y, et al. Vitrification of municipal solid waste incineration fly ash with B2O3 as a fluxing agent[J]. Waste Management, 2020, 102: 932-938. [62] HU L Y, MA J L, YUE Y, et al. Fixation stability of glass matrix co-existent with crystal phases for heavy metals formed by high-temperature vitrification[J]. Environmental Science and Pollution Research, 2021, 28(11): 13660-13670. [63] SHIH K, WHITE T, LECKIE J O. Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors[J]. Environmental Science & Technology, 2006, 40(16): 5077-5083. [64] LU X W, SHIH K. Formation of lead-aluminate ceramics: reaction mechanisms in immobilizing the simulated lead sludge[J]. Chemosphere, 2015, 138: 156-163. [65] BUELT J L, FARNSWORTH R K. In situ vitrification of soils containing various metals[J]. Nuclear Technology, 1991, 96(2): 178-184. [66] SALT D E, BLAYLOCK M, KUMAR N P, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants[J]. Bio/Technology (Nature Publishing Company), 1995, 13(5): 468-474. [67] RIZWAN M, MEUNIER J D, MICHE H, et al. Effect of silicon on reducing cadmium toxicity in durum wheat (triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination[J]. Journal of Hazardous Materials, 2012, 209/210: 326-334. [68] REHMAN M Z U, RIZWAN M, GHAFOOR A, et al. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation[J]. Environmental Science and Pollution Research, 2015, 22(21): 16897-16906. [69] BLAYLOCK M J, SALT D E, DUSHENKOV S, et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environmental Science & Technology, 1997, 31(3): 860-865. [70] DIPU S, KUMAR A A, THANGA S G. Effect of chelating agents in phytoremediation of heavy metals[J]. Remediation Journal, 2012, 22(2): 133-146. [71] CHEN H M, ZHENG C R, TU C, et al. Chemical methods and phytoremediation of soil contaminated with heavy metals[J]. Chemosphere, 2000, 41(1/2): 229-234. [72] ANTIOCHIA R, CAMPANELLA L, GHEZZI P, et al. The use of vetiver for remediation of heavy metal soil contamination[J]. Analytical and Bioanalytical Chemistry, 2007, 388(4): 947-956. [73] GARBISU C, ALKORTA I, LLAMA M J, et al. Aerobic chromate reduction by Bacillus subtilis[J]. Biodegradation, 1998, 9(2): 133-141. [74] ISHIBASHI Y, CERVANTES C, SILVER S. Chromium reduction in Pseudomonas putida[J]. Applied and Environmental Microbiology, 1990, 56(7): 2268-2270. [75] GARBISU C, LLAMA M J, SERRA J L. Effect of heavy metals on chromate reduction by Bacillus subtilis[J]. The Journal of General and Applied Microbiology, 1997, 43(6): 369-371. [76] WANG P C, MORI T, KOMORI K, et al. Isolation and characterization of an enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions[J]. Appl Environ Microbiol, 1989, 55(7): 1665-1669. [77] GARBISU C, GONZALEZ S, YANG W H, et al. Physiological mechanisms regulating the conversion of selenite to elemental selenium by Bacillus subtilis[J]. BioFactors (Oxford, England), 1995, 5(1): 29-37. [78] JING Y D, HE Z L, YANG X E. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils[J]. Journal of Zhejiang University SCIENCE B, 2007, 8(3): 192-207. [79] WHITE C, SHAMAN A K, GADD G M. An integrated microbial process for the bioremediation of soil contaminated with toxic metals[J]. Nature Biotechnology, 1998, 16(6): 572-575. [80] DASH H R, DAS S. Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03(pPW-05)[J]. International Biodeterioration & Biodegradation, 2015, 103: 179-185. |
[1] | 张歆, 刘方, 朱健, 陈祖拥. 基于电解锰渣-磷石膏复合胶凝材料的制备与表征[J]. 硅酸盐通报, 2021, 40(5): 1610-1619. |
[2] | 苏青, 谢红波, 陈哲, 麦俊明, 吴春丽. 电炉镍铁渣重金属浸出研究[J]. 硅酸盐通报, 2021, 40(4): 1312-1317. |
[3] | 王晴;王新锐;游旭佳;曹海;李天如. 飞灰基地聚合物固化重金属的研究现状与发展趋势[J]. 硅酸盐通报, 2020, 39(9): 2849-2857. |
[4] | 李洪达;乐红志;朱建平;刘金婵;于克福. 赤泥烧结制品中的重金属溶出特性研究[J]. 硅酸盐通报, 2020, 39(9): 2932-2936. |
[5] | 朱颖灿;张祖华;刘意;邓毓琳. 地质聚合物基废水处理吸附材料研究进展[J]. 硅酸盐通报, 2020, 39(8): 2458-2467. |
[6] | 杨雁惠;洪梅. 地质聚合物污染阻截墙的泛碱控制及对重金属的吸附性能[J]. 硅酸盐通报, 2020, 39(3): 804-811. |
[7] | 冯庆革;方灿东;杨义;吴飚;赵政术;柏秀奎;朱伟伟;王东波;刘峥. 不同重金属和氯对水泥熟料及其超早期水化特性的影响[J]. 硅酸盐通报, 2020, 39(10): 3230-3236. |
[8] | 张利祥;高一强;黄建洪;陈珊;张琴;陈允建;伏江丽. 赤泥资源化综合利用研究进展[J]. 硅酸盐通报, 2020, 39(1): 144-149. |
[9] | 徐泽忠;曹显志;龚哲清;甘杰军;谢劲松;韩成良. SiO2/C复合微球的制备及其脱除水体中Cu(Ⅱ)和Cr(Ⅵ)的动力学和热力学[J]. 硅酸盐通报, 2020, 39(1): 309-314. |
[10] | 李晔;方嘉淇. 磷酸镁水泥对挥发型重金属P b2+、C d2+的固化效果及机理的研究[J]. 硅酸盐通报, 2019, 38(3): 901-904. |
[11] | 白秀佳;张红玉;张齐;顾军;韩力;王继红. 水泥窑协同处置腐殖土对水泥性能影响的模拟研究[J]. 硅酸盐通报, 2019, 38(2): 471-477. |
[12] | 罗立群;涂序;周鹏飞. 湖泥陶粒的制备及重金属固化研究[J]. 硅酸盐通报, 2019, 38(11): 3397-340. |
[13] | 杨敏;王丽娟;宋岩. 凹凸棒石吸附重金属的研究进展[J]. 硅酸盐通报, 2019, 38(11): 3445-344. |
[14] | 马义;杨晋;韩凤兰;祁利民. 脱硫石膏吸附水体中重金属离子行为的研究[J]. 硅酸盐通报, 2018, 37(6): 1868-1876. |
[15] | 李珂珂;段正洋;云露;周阳. 改性壳聚糖材料在含重金属废水处理中的应用研究进展[J]. 硅酸盐通报, 2018, 37(5): 1637-1642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||