[1] KHAN M, ALI M. Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks[J]. Construction and Building Materials, 2016, 125: 800-808. [2] 宋传江,王 虎.玻璃纤维增强复合材料工程化应用进展[J].中国塑料,2015,29(3):9-15. SONG C J, WANG H. Engineering application research of glass fiber reinforced composite materials[J]. China Plastics, 2015, 29(3): 9-15 (in Chinese). [3] 赵 晶,李晓民,宋学富.耐碱玻璃纤维混凝土的配合比设计[J].哈尔滨工业大学学报,2005,37(6):766-768. ZHAO J, LI X M, SONG X F. Mix design of alkali-resistance glass fiber concrete[J]. Journal of Harbin Institute of Technology, 2005, 37(6): 766-768 (in Chinese). [4] YURDAKUL A, DOLEKCEKIC E, GUNKAYA G, et al. The usage of newly developed glass fibre in cement structure and their characterization[J]. Construction and Building Materials, 2018, 170: 13-19. [5] 王月明,唐永志,刘开伟,等.纤维和胶粉对水泥砂浆力学和抗裂性能的影响[J].硅酸盐通报,2018,37(9):2775-2781. WANG Y M, TANG Y Z, LIU K W, et al. Effects of fiber and rubber powder on the mechanical and crack resistance of cement mortars[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2775-2781 (in Chinese). [6] ALI B, QURESHI L A. Influence of glass fibers on mechanical and durability performance of concrete with recycled aggregates[J]. Construction and Building Materials, 2019, 228: 116783. [7] AHMAD S, UMAR A. Rheological and mechanical properties of self-compacting concrete with glass and polyvinyl alcohol fibres[J]. Journal of Building Engineering, 2018, 17: 65-74. [8] SIVAKUMAR V R, KAVITHA O R, PRINCE A G, et al. An experimental study on combined effects of glass fiber and metakaolin on the rheological, mechanical, and durability properties of self-compacting concrete[J]. Applied Clay Science, 2017, 147: 123-127. [9] 沈 武,杨鼎宜,骆静静,等.耐碱玻璃纤维混凝土的长期力学性能研究[J].混凝土,2017(6):102-106. SHEN W, YANG D Y, LUO J J, et al. Research of the long-term mechanical properties of alkali resistant glass fiber concrete[J]. Concrete, 2017(6): 102-106 (in Chinese). [10] SAKIN M, KIROGLU Y C. 3D printing of buildings: construction of the sustainable houses of the future by BIM[J]. Energy Procedia, 2017, 134: 702-711. [11] XU J, DING L Y, LOVE P E D. Digital reproduction of historical building ornamental components: from 3D scanning to 3D printing[J]. Automation in Construction, 2017, 76: 85-96. [12] 张大旺,王栋民.3D打印混凝土材料及混凝土建筑技术进展[J].硅酸盐通报,2015,34(6):1583-1588. ZHANG D W, WANG D M. Progress of 3D print of concrete materials and concrete construction technology[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1583-1588 (in Chinese). [13] PAOLINI A, KOLLMANNSBERGER S, RANK E. Additive manufacturing in construction: a review on processes, applications, and digital planning methods[J]. Additive Manufacturing, 2019, 30: 100894. [14] 沈荣熹,崔 琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004 SHEN R X, CUI Q, LI Q H. New type fibre reinforced cement-based composites[M]. Beijing: China Building Materials Press, 2004 (in Chinese). [15] 孙晓燕,汪 群,王海龙,等.多壁碳纳米管对3D打印混凝土性能影响试验研究[J].新型建筑材料,2020,47(1):27-29+37. SUN X Y, WANG Q, WANG H L, et al. Study on effect of multi-walled nanotubes (MWNTs) on properties of 3D printing concrete[J]. New Building Materials, 2020, 47(1): 27-29+37 (in Chinese). [16] RUBIO M, SONEBI M, Amziane S. 3D printing of fibre cement-based materials: fresh and rheological performances[J]. Academic Journal of Civil Engineering, 2017, 35(2): 480-488. [17] DING T, XIAO J Z, ZOU S, et al. Anisotropic behavior in bending of 3D printed concrete reinforced with fibers[J]. Composite Structures, 2020, 254: 112808. [18] LI L G, XIAO B F, FANG Z Q, et al. Feasibility of glass/basalt fiber reinforced seawater coral sand mortar for 3D printing[J]. Additive Manufacturing, 2021, 37: 101684. [19] 中国标准化委员会.水泥胶砂流动度测定方法:GB/T 2419—2005[S].北京:中国标准出版社,2005. Standardization Administration. Test method for fluidity of cement mortar: GB/T 2419—2005[S]. Beijing: China Quality and Standards Publishing, 2005 (in Chinese). [20] RAHUL A V, SANTHANAM M, MEENA H, et al. 3D printable concrete: mixture design and test methods[J]. Cement and Concrete Composites, 2019, 97: 13-23. [21] PANDA B, PAUL S C, MOHAMED N A N, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108-116. [22] BUSWELL R A, LEAL DE SILVA W R, JONES S Z, et al. 3D printing using concrete extrusion: a roadmap for research[J]. Cement and Concrete Research, 2018, 112: 37-49. [23] 中国建筑材料科学研究院.水泥胶砂强度检验方法(ISO法):GB/T 17671—1999[S].北京:中国标准出版社,1999. China Building Materials Academy. Method of testing cements-determination of strength: GB/T 17671—1999[S]. Beijing: China Quality and Standards Publishing, 1999 (in Chinese). [24] 李孝忠,王庆贺,王玉银,等.再生混凝土抗折强度的影响因素及其计算方法[J].建筑结构学报,2019,40(1):155-164. LI X Z, WANG Q H, WANG Y Y, et al. Influence factors and prediction methods for flexural strength of recycled aggregate concrete[J]. Journal of Building Structures, 2019, 40(1): 155-164 (in Chinese). [25] SINGH S B, MUNJAL P, THAMMISHETTI N. Role of water/cement ratio on strength development of cement mortar[J]. Journal of Building Engineering, 2015, 4: 94-100. [26] 吴志煜,王时越,吕 燕,等.耐碱玻纤混凝土抗折强度测定及不确定度评定[J].实验室研究与探索,2012,31(6):36-39. WU Z Y, WANG S Y, LV Y, et al. An evaluation of measurement uncertainty on flexural strength of alkali-resistance glass fiber concrete[J]. Research and Exploration in Laboratory, 2012, 31(6): 36-39 (in Chinese). [27] ARUNOTHAYAN A R, NEMATOLLAHI B, RANADE R, et al. Fiber orientation effects on ultra-high performance concrete formed by 3D printing[J]. Cement and Concrete Research, 2021, 143: 106384. [28] LI L G, FENG J J, ZHU J, et al. Pervious concrete: effects of porosity on permeability and strength[J]. Magazine of Concrete Research, 2021, 73(2): 69-79. [29] 刘 军,刘 畅,刘润清,等.玻璃纤维增强磷酸镁水泥的力学性能[J].材料科学与工程学报,2020,38(6):1026-1031. LIU J, LIU C, LIU R Q, et al. Mechanical properties of glass fiber reinforced magnesium phosphate cement[J]. Journal of Materials Science and Engineering, 2020, 38(6): 1026-1031 (in Chinese). [30] ABDUL R Z A, SALHOTRA S. Effect of waste foundry sand and glass fiber on mechanical properties and fire resistance of high-strength concrete[J]. Materials Today: Proceedings, 2020, 33: 1733-1740. [31] LI L G, ZHUO H X, ZHU J, et al. Packing density of mortar containing polypropylene, carbon or basalt fibres under dry and wet conditions[J]. Powder Technology, 2019, 342: 433-440. [32] KWAN A K H, CHAN K W, WONG V. A 3-parameter particle packing model incorporating the wedging effect[J]. Powder Technology, 2013, 237: 172-179. |