[1] 沙 飞,李术才,林春金,等.砂土介质注浆渗透扩散试验与加固机制研究[J].岩土力学,2019,40(11):4259-4269. SHA F, LI S C, LIN C J, et al. Research on penetration grouting diffusion experiment and reinforcement mechanism for sandy soil porous media[J]. Rock and Soil Mechanics, 2019, 40(11): 4259-4269 (in Chinese). [2] 田中男,张争奇,李乃强,等.工业废渣地聚合物注浆材料组分及性能增强的研究进展[J].材料导报,2020,34(19):19034-19042. TIAN Z N, ZHANG Z Q, LI N Q, et al. Composition and performance enhancement of geopolymer grouting materials with industrial residue: a review[J]. Materials Reports, 2020, 34(19): 19034-19042 (in Chinese). [3] 宋维龙,朱志铎,浦少云,等.碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J].材料导报,2020,34(22):22070-22077. SONG W L, ZHU Z D, PU S Y, et al. Mechanical performance and micro-mechanism of alkali-activated binary/ternary composite industrial waste residues cementitious materials[J]. Materials Reports, 2020, 34(22): 22070-22077 (in Chinese). [4] SHI C J, JIMÉNEZ A F, PALOMO A. New cements for the 21st century: the pursuit of an alternative to Portland cement[J]. Cement and Concrete Research, 2011, 41(7): 750-763. [5] QIN L, GAO X J, LI Q Y. Upcycling carbon dioxide to improve mechanical strength of Portland cement[J]. Journal of Cleaner Production, 2018, 196: 726-738. [6] ANDREW R M. Global CO2 emissions from cement production, 1928—2018[J]. Earth System Science Data, 2019, 11(4): 1675-1710. [7] VAN DEVENTER J S J, PROVIS J L, DUXSON P. Technical and commercial progress in the adoption of geopolymer cement[J]. Minerals Engineering, 2012, 29: 89-104. [8] THOMAS R J, YE H, RADLINSKA A, et al. Alkali-activated slag cement concrete[J]. Concrete International, 2016, 38(1): 33-38. [9] DUXSON P, PROVIS J L, LUKEY G C, et al. The role of inorganic polymer technology in the development of ‘green concrete’[J]. Cement and Concrete Research, 2007, 37(12): 1590-1597. [10] 彭 晖,李一聪,罗 冬,等.碱激发偏高岭土/矿渣复合胶凝体系反应水平及影响因素分析[J].建筑材料学报,2020,23(6):1390-1397. PENG H, LI Y C, LUO D, et al. Analysis of reaction level and factors of alkali activated metakaolin/GGBFS[J]. Journal of Building Materials, 2020, 23(6): 1390-1397 (in Chinese). [11] 高 原,许金余,张国喜,等.矿渣碱激发胶凝材料早期性能的响应曲面研究[J].建筑材料学报,2016,19(2):209-213+220. GAO Y, XU J Y, ZHANG G X, et al. Response surface on early performance of alkali-activated slag binder[J]. Journal of Building Materials, 2016, 19(2): 209-213+220 (in Chinese). [12] 郑文忠,邹梦娜,王 英.碱激发胶凝材料研究进展[J].建筑结构学报,2019,40(1):28-39. ZHENG W Z, ZOU M N, WANG Y. Literature review of alkali-activated cementitious materials[J]. Journal of Building Structures, 2019, 40(1): 28-39 (in Chinese). [13] Standard test method for autogenous strain of cement paste and mortar: ASTM C1968—2009[S]. ASTM International, 2009. [14] SASAKI K, KURUMISAWA K, IBAYASHI K. Effect of retarders on flow and strength development of alkali-activated fly ash/blast furnace slag composite[J]. Construction and Building Materials, 2019, 216: 337-346. [15] ODERJI S Y, CHEN B, SHAKYA C, et al. Influence of superplasticizers and retarders on the workability and strength of one-part alkali-activated fly ash/slag binders cured at room temperature[J]. Construction and Building Materials, 2019, 229: 116891. [16] LIU L P, XIE M J, HE Y, et al. Expansion behavior and microstructure change of alkali-activated slag grouting material in sulfate environment[J]. Construction and Building Materials, 2020, 260: 119909. [17] CHEN W W, LI B, WANG J, et al. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste[J]. Cement and Concrete Research, 2021, 141: 106322. [18] YUAN B, YU Q L, BROUWERS H J H. Time-dependent characterization of Na2CO3 activated slag[J]. Cement and Concrete Composites, 2017, 84: 188-197. [19] BERNAL S A, PROVIS J L, MYERS R J, et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders[J]. Materials and Structures, 2015, 48(3): 517-529. [20] YUAN B, YU Q L, DAINESE E, et al. Autogenous and drying shrinkage of sodium carbonate activated slag altered by limestone powder incorporation[J]. Construction and Building Materials, 2017, 153: 459-468. |