[1] DONG W K, LI W G, TAO Z, et al. Piezoresistive properties of cement-based sensors: review and perspective[J]. Construction and Building Materials, 2019, 203: 146-163. [2] 罗尧治,沈雁彬,童若飞,等.空间结构健康监测与预警技术[J].施工技术,2009,38(3):4-8. LUO Y Z, SHEN Y B, TONG R F, et al. Health monitoring and early warning technology in spatial structure[J]. Construction Technology, 2009, 38(3): 4-8 (in Chinese). [3] 欧进萍.土木工程结构用智能感知材料、传感器与健康监测系统的研发现状[J].功能材料信息,2005,2(5):12-22. OU J P. Smart sensing materials, sensors and structural health monitoring in civil engineering [J]. Functional Materials Information, 2005, 2(5): 12-22 (in Chinese). [4] DUSZA J, MORGIEL J, DUSZOVÁ A, et al. Microstructure and fracture toughness of Si3N4+graphene platelet composites[J]. Journal of the European Ceramic Society, 2012, 32(12): 3389-3397. [5] 陈佳敏,夏海廷,林志伟,等.不同养护龄期和水灰比下纳米石墨烯片水泥基复合材料力学性能研究[J].硅酸盐通报,2020,39(6):1703-1708. CHEN J M, XIA H T, LIN Z W, et al. Investigation on mechanical properties of graphene nanoplatelets reinforced cement-based composite with different curing ages and water-cement ratios[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1703-1708 (in Chinese). [6] WANG B M, SHUANG D. Effect of graphene nanoplatelets on the properties, pore structure and microstructure of cement composites[J]. Materials Express, 2018, 8(5): 407-416. [7] 刘 衡,孙明清,李 俊,等.掺纳米石墨烯片的水泥基复合材料的压敏性[J].功能材料,2015,46(16):16064-16068. LIU H, SUN M Q, LI J, et al. Piezoresistive effects of cement-based composites containing graphene nanoplatelets[J]. Journal of Functional Materials, 2015, 46(16): 16064-16068 (in Chinese). [8] OZBULUT O E, JIANG Z F, HARRIS D K. Exploring scalable fabrication of self-sensing cementitious composites with graphene nanoplatelets[J]. Smart Materials and Structures, 2018, 27(11): 115029. [9] DU H J, QUEK S T, PANG S D. Smart multifunctional cement mortar containing graphite nanoplatelet[C]//SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. Proc SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013, San Diego, California, USA. 2013, 8692: 869238. [10] DONG W K, LI W G, VESSALAS K, et al. Piezoresistivity deterioration of smart graphene nanoplate/cement-based sensors subjected to sulphuric acid attack[J]. Composites Communications, 2021, 23: 100563. [11] TAO J, WANG X H, WANG Z D, et al. Graphene nanoplatelets as an effective additive to tune the microstructures and piezoresistive properties of cement-based composites[J]. Construction and Building Materials, 2019, 209: 665-678. [12] 蒋林华,白舒雅,金 鸣,等.石墨烯水泥基复合材料的电导率研究[J].哈尔滨工程大学学报,2018,39(3):601-606. JIANG L H, BAI S Y, JIN M, et al. Electrical conductivity of the graphene/cement composites[J]. Journal of Harbin Engineering University, 2018, 39(3): 601-606 (in Chinese). [13] SIMMONS J G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 1963, 34(9): 2581-2590. [14] 尹磊建.复相导电机敏混凝土压敏特性及其电学成像初步研究[D].徐州:中国矿业大学,2019. YIN L J. Study on the pressure sensitive properties of composite conductive smart concrete and preliminary study on its electrical imaging[D]. Xuzhou: China University of Mining and Technology, 2019 (in Chinese). [15] 马雪平.碳纳米管水泥基复合材料压敏性能研究[D].济南:山东大学,2013. MA X P. Piezoresistivity of carbon nanotubes-cement composite[D]. Jinan: Shandong University, 2013 (in Chinese). |